Wang R, Li X, Yoon J. Organelle-targeted photosensitizers for precision photodynamic therapy. ACS Appl Mater Interfaces. 2021;13:19543–71.
Article
CAS
Google Scholar
Catherine B, Guido K. Mitochondria--the death signal integrators. Science (80- ). 2000;289:1150–1. https://doi.org/10.1126/science.289.5482.1150 American Association for the Advancement of Science.
Article
Google Scholar
Qin J, Gong N, Liao Z, Zhang S, Timashev P, Huo S, et al. Recent progress in mitochondria-targeting-based nanotechnology for cancer treatment. Nanoscale. 2021;13:7108–18 Royal Society of Chemistry.
Article
CAS
Google Scholar
Kembro JM, Cortassa S, Aon MA. Mitochondrial reactive oxygen species and arrhythmias. Syst Biol Free Radicals Antioxidants. 2012;4:1047–76. https://doi.org/10.1186/2049-3002-2-17.
Chen J, Zhang R, Tao C, Huang X, Chen Z, Li X, et al. CuS–NiS2 nanomaterials for MRI guided phototherapy of gastric carcinoma via triggering mitochondria-mediated apoptosis and MLKL/CAPG-mediated necroptosis. Nanotoxicology. 2020;14:774–87. https://doi.org/10.1080/17435390.2020.1759727 Taylor & Francis.
Article
CAS
Google Scholar
Li C, Zhang Y, Liu J, Kang R, Klionsky DJ, Tang D. Mitochondrial DNA stress triggers autophagy-dependent ferroptotic death. Autophagy. 2021;17:948–60. https://doi.org/10.1080/15548627.2020.1739447 Taylor & Francis.
Article
CAS
Google Scholar
Xue C, Gu X, Li G, Bao Z, Li L. Mitochondrial mechanisms of necroptosis in liver diseases. Int J Mol Sci. 2021;22:1–12.
Google Scholar
Vasan K, Werner M, Chandel NS. Mitochondrial metabolism as a target for cancer therapy. Cell Metab. 2020;32:341–52. https://doi.org/10.1016/j.cmet.2020.06.019 Elsevier Inc.
Article
CAS
Google Scholar
Luo X, Gong X, Su L, Lin H, Yang Z, Yan X, et al. Activatable mitochondria-targeting Organoarsenic Prodrugs for bioenergetic cancer therapy. Angew Chem Int Ed. 2021;60:1403–10.
Article
CAS
Google Scholar
Cui L, Gouw AM, LaGory EL, Guo S, Attarwala N, Tang Y, et al. Mitochondrial copper depletion suppresses triple-negative breast cancer in mice. Nat Biotechnol. 2021;39:357–67.
Article
CAS
Google Scholar
Jiang H, Guo Y, Wei C, Hu P, Shi J. Nanocatalytic innate immunity activation by mitochondrial DNA oxidative damage for tumor-specific therapy. Adv Mater. 2021;33:1–11.
Article
CAS
Google Scholar
Yu Z, Guo J, Hu M, Gao Y, Huang L. Icaritin exacerbates Mitophagy and synergizes with doxorubicin to induce immunogenic cell death in hepatocellular carcinoma. ACS Nano. 2020;14:4816–28.
Article
CAS
Google Scholar
Oladimeji O, Akinyelu J, Singh M. Nanomedicines for subcellular targeting: the mitochondrial perspective. Curr Med Chem. 2019;27:5480–509.
Article
Google Scholar
Li X, Zhao Y, Zhang T, Xing D. Mitochondria-specific agents for photodynamic cancer therapy: a key determinant to boost the efficacy. Adv Healthc Mater. 2021;10:1–23.
Article
Google Scholar
Kim S, Tachikawa T, Fujitsuka M, Majima T. Far-red fluorescence probe for monitoring singlet oxygen during photodynamic therapy. J Am Chem Soc. 2014;136:11707–15.
Article
CAS
Google Scholar
Liu Y, Jiang Y, Zhang M, Tang Z, He M, Bu W. Modulating hypoxia via Nanomaterials chemistry for efficient treatment of solid tumors. Acc Chem Res. 2018;51:2502–11.
Article
CAS
Google Scholar
Li X, Kwon N, Guo T, Liu Z, Yoon J. Innovative strategies for hypoxic-tumor photodynamic therapy. Angew Chem Int Ed. 2018;57:11522–31.
Article
CAS
Google Scholar
Zhou Z, Zhang B, Wang H, Yuan A, Hu Y, Wu J. Two-stage oxygen delivery for enhanced radiotherapy by perfluorocarbon nanoparticles. Theranostics. 2018;8:4898–911.
Article
CAS
Google Scholar
Cheng Y, Cheng H, Jiang C, Qiu X, Wang K, Huan W, et al. Perfluorocarbon nanoparticles enhance reactive oxygen levels and tumour growth inhibition in photodynamic therapy. Nat Commun. 2015;6:6–13 Nature Publishing Group.
Article
Google Scholar
Meng L, Cheng Y, Tong X, Gan S, Ding Y, Zhang Y, et al. Tumor oxygenation and hypoxia inducible factor-1 functional inhibition via a reactive oxygen species responsive nanoplatform for enhancing radiation therapy and abscopal effects. ACS Nano. 2018;12:8308–22.
Article
CAS
Google Scholar
Zai W, Kang L, Dong T, Wang H, Yin L, Gan S, et al. E. coli membrane vesicles as a catalase carrier for long-term tumor hypoxia relief to enhance radiotherapy. ACS Nano. 2021;15:15381–94.
Article
CAS
Google Scholar
Wang H, Guo Y, Wang C, Jiang X, Liu H, Yuan A, et al. Light-controlled oxygen production and collection for sustainable photodynamic therapy in tumor hypoxia. Biomaterials. 2021;269:120621. https://doi.org/10.1016/j.biomaterials.2020.120621 Elsevier Ltd.
Article
CAS
Google Scholar
Wang H, Guo Y, Gan S, Liu H, Chen Q, Yuan A, et al. Photosynthetic microorganisms-based Biophotothermal therapy with enhanced immune response. Small. 2021;17:1–9.
Google Scholar
Wang H, Liu H, Guo Y, Zai W, Li X, Xiong W, et al. Photosynthetic microorganisms coupled photodynamic therapy for enhanced antitumor immune effect. Bioact Mater. 2021. https://doi.org/10.1016/j.bioactmat.2021.10.028 KeAi Communications Co, Ltd.
Moreno-Sánchez R, Rodríguez-Enríquez S, Marín-Hernández A, Saavedra E. Energy metabolism in tumor cells. FEBS J. 2007;274:1393–418.
Article
Google Scholar
Grimes DR, Kelly C, Bloch K, Partridge M. A method for estimating the oxygen consumption rate in multicellular tumour spheroids. J R Soc Interface. 2014;11:20131124. https://doi.org/10.1098/rsif.2013.1124.
Benej M, Hong X, Vibhute S, Scott S, Wu J, Graves E, et al. Papaverine and its derivatives radiosensitize solid tumors by inhibiting mitochondrial metabolism. Proc Natl Acad Sci U S A. 2018;115:E11561.
Article
Google Scholar
Chen Q, Vazquez EJ, Moghaddas S, Hoppel CL, Lesnefsky EJ. Production of reactive oxygen species by mitochondria: central role of complex III. J Biol Chem. 2003;278:36027–31. https://doi.org/10.1074/jbc.M304854200 © 2003 ASBMB. Currently published by Elsevier Inc; originally published by American Society for Biochemistry and Molecular Biology.
Article
CAS
Google Scholar
Zhao L-P, Zheng R-R, Chen H-Q, Liu L-S, Zhao X-Y, Liu H-H, et al. Self-delivery Nanomedicine for O2-economized photodynamic tumor therapy. Nano Lett. 2020;20:2062–71. https://doi.org/10.1021/acs.nanolett.0c00047 American Chemical Society.
Article
CAS
Google Scholar
Zheng R, Chen X, Zhao L, Yang N, Guan R, Chen A, et al. A porphysome-based photodynamic O2economizer for hypoxic tumor treatment by inhibiting mitochondrial respiration. Chem Commun. 2021;57:4134–7 Royal Society of Chemistry.
Article
CAS
Google Scholar
Wang S, Guo F, Ji Y, Yu M, Wang J, Li N. Dual-mode imaging guided multifunctional Theranosomes with mitochondria targeting for Photothermally controlled and enhanced photodynamic therapy in vitro and in vivo. Mol Pharm. 2018;15:3318–31.
Article
CAS
Google Scholar
Zhang E, Luo S, Tan X, Shi C. Mechanistic study of IR-780 dye as a potential tumor targeting anddrug delivery agent. Biomaterials. 2014;35:771–8. https://doi.org/10.1016/j.biomaterials.2013.10.033 Elsevier Ltd.
Article
CAS
Google Scholar
Hochmuth RM, Evans EA, Wiles HC, McCown JT. Mechanical measurement of red cell membrane thickness. Science (80- ). 1983;220:101–2.
Article
CAS
Google Scholar
Yu P, Han X, Yin L, Hui K, Guo Y, Yuan A, et al. Artificial red blood cells constructed by replacing Heme with Perfluorodecalin for hypoxia-induced Radioresistance. Adv Ther. 2019;2:1–7.
CAS
Google Scholar
Wang W, Cheng Y, Yu P, Wang H, Zhang Y, Xu H, et al. Perfluorocarbon regulates the intratumoural environment to enhance hypoxia-based agent efficacy. Nat Commun. 2019;10:1–11. https://doi.org/10.1038/s41467-019-09389-2 Springer US.
Article
CAS
Google Scholar
Oldenborg PA, Zheleznyak A, Fang YF, Lagenaur CF, Gresham HD, Lindberg FP. Role of CD47 as a marker of self on red blood cells. Science (80- ). 2000;288:2051–4.
Article
CAS
Google Scholar
Yang Z, Wang J, Liu S, Li X, Miao L, Yang B, et al. Defeating relapsed and refractory malignancies through a nano-enabled mitochondria-mediated respiratory inhibition and damage pathway. Biomaterials. 2020;229:119580. https://doi.org/10.1016/j.biomaterials.2019.119580 Elsevier.
Article
CAS
Google Scholar
Kirkness EF, Haas BJ. Multistage nanoparticle delivery system for deep penetration into tumor tissue. Proc Natl Acad Sci U S A. 2011;108:6335.
CAS
Google Scholar
Yan JW, Zhu JY, Zhou KX, Wang JS, Tan HY, Xu ZY, et al. Neutral merocyanine dyes: for: in vivo NIR fluorescence imaging of amyloid-β plaques. Chem Commun. 2017;53:9910–3 Royal Society of Chemistry.
Article
CAS
Google Scholar
García KP, Zarschler K, Barbaro L, Barreto JA, O’Malley W, Spiccia L, et al. Zwitterionic-coated “stealth” nanoparticles for biomedical applications: recent advances in countering biomolecular corona formation and uptake by the mononuclear phagocyte system. Small. 2014;10:2516–29.
Article
Google Scholar
Murciano-Goroff YR, Taylor BS, Hyman DM, Schram AM. Toward a more precise future for oncology. Cancer Cell. 2020;37:431–42. https://doi.org/10.1016/j.ccell.2020.03.014 Elsevier Inc.
Article
CAS
Google Scholar
Fu X, Shi Y, Qi T, Qiu S, Huang Y, Zhao X, et al. Precise design strategies of nanomedicine for improving cancer therapeutic efficacy using subcellular targeting. Signal Transduct Target Ther. 2020;5:1–15. https://doi.org/10.1038/s41392-020-00342-0 Springer US.
Article
Google Scholar
Ju YS, Alexandrov LB, Gerstung M, Martincorena I, Nik-Zainal S, Ramakrishna M, et al. Origins and functional consequences of somatic mitochondrial DNA mutations in human cancer. Elife. 2014;3:1–28.
Article
Google Scholar
Ni K, Lan G, Veroneau SS, Duan X, Song Y, Lin W. Nanoscale metal-organic frameworks for mitochondria-targeted radiotherapy-radiodynamic therapy. Nat Commun. 2018;9. https://doi.org/10.1038/s41467-018-06655-7 Springer US.
Wang Y, Zhang T, Hou C, Zu M, Lu Y, Ma X, et al. Mitochondria-specific anticancer drug delivery based on reduction-activated Polyprodrug for enhancing the therapeutic effect of breast cancer chemotherapy. ACS Appl Mater Interfaces. 2019;11:29330–40.
Article
CAS
Google Scholar
Nash GT, Luo T, Lan G, Ni K, Kaufmann M, Lin W. Nanoscale metal-organic layer isolates Phthalocyanines for efficient mitochondria-targeted photodynamic therapy. J Am Chem Soc. 2021;143:2194–9.
Article
CAS
Google Scholar
Maher EA, Marin-Valencia I, Bachoo RM, Mashimo T, Raisanen J, Hatanpaa KJ, et al. Metabolism of [U-13C]glucose in human brain tumors in vivo. NMR Biomed. 2012;25:1234–44.
Article
CAS
Google Scholar
Hensley CT, Faubert B, Yuan Q, Lev-Cohain N, Jin E, Kim J, et al. Metabolic heterogeneity in human lung tumors. Cell. 2016;164:681–94. https://doi.org/10.1016/j.cell.2015.12.034 Elsevier Inc.
Article
CAS
Google Scholar
Anderson NM, Mucka P, Kern JG, Feng H. The emerging role and targetability of the TCA cycle in cancer metabolism. Protein Cell. 2018;9:216–37 Higher Education Press.
Article
CAS
Google Scholar
Guo JY, Chen HY, Mathew R, Fan J, Strohecker AM, Karsli-Uzunbas G, et al. Activated Ras requires autophagy to maintain oxidative metabolism and tumorigenesis. Genes Dev. 2011;25:460–70.
Article
CAS
Google Scholar
Weinberg F, Hamanaka R, Wheaton WW, Weinberg S, Joseph J, Lopez M, et al. Mitochondrial metabolism and ROS generation are essential for Kras-mediated tumorigenicity. Proc Natl Acad Sci U S A. 2010;107:8788–93.
Article
CAS
Google Scholar
Pustylnikov S, Costabile F, Beghi S, Facciabene A. Targeting mitochondria in cancer: current concepts and immunotherapy approaches. Transl Res. 2018;202:35–51. https://doi.org/10.1016/j.trsl.2018.07.013 Elsevier Inc.
Article
CAS
Google Scholar
O’Donnell JL, Joyce MR, Shannon AM, Harmey J, Geraghty J, Bouchier-Hayes D. Oncological implications of hypoxia inducible factor-1α (HIF-1α) expression. Cancer Treat Rev. 2006;32:407–16.
Article
Google Scholar
Ashton TM, Fokas E, Kunz-Schughart LA, Folkes LK, Anbalagan S, Huether M, et al. The anti-malarial atovaquone increases radiosensitivity by alleviating tumour hypoxia. Nat Commun. 2016;7:12308. https://doi.org/10.1038/ncomms12308.
Xiang M, Kim H, Ho VT, Walker SR, Bar-Natan M, Anahtar M, et al. Gene expression-based discovery of atovaquone as a STAT3 inhibitor and anticancer agent. Blood. 2016;128:1845–53.
Article
CAS
Google Scholar
Arai M, Imai H, Koumura T, Yoshida M, Emoto K, Umeda M, et al. Mitochondrial phospholipid hydroperoxide glutathione peroxidase plays a major role in preventing oxidative injury to cells. J Biol Chem. 1999;274:4924–33.
Article
CAS
Google Scholar
St-Pierre J, Buckingham JA, Roebuck SJ, Brand MD. Topology of superoxide production from different sites in the mitochondrial electron transport chain. J Biol Chem. 2002;277:44784–90.
Article
CAS
Google Scholar
Gille L, Nohl H. The ubiquinol/bc1 redox couple regulates mitochondrial oxygen radical formation. Arch Biochem Biophys. 2001;388:34–8.
Article
CAS
Google Scholar
Han D, Antunes F, Canali R, Rettori D, Cadenas E. Voltage-dependent anion channels control the release of the superoxide anion from mitochondria to cytosol. J Biol Chem. 2003;278:5557–63.
Article
CAS
Google Scholar
Demin OV, Kholodenko BN, Skulachev VP. A model of O·2- generation in the complex III of the electron transport chain. Mol Cell Biochem. 1998;184:21–33.
Article
CAS
Google Scholar
Wu Z, Oeck S, West AP, Mangalhara KC, Sainz AG, Newman LE, et al. Mitochondrial DNA stress signalling protects the nuclear genome. Nat Metab. 2019;1:1209–18 Nature Research. https://doi.org/10.1038/s42255-019-0150-8.
Guo X, Yang N, Ji W, Zhang H, Dong X, Zhou Z, et al. Mito-Bomb : targeting mitochondria for cancer therapy. Adv Mater. 2021;2007778:1–40. https://doi.org/10.1002/adma.202007778.
Li X, Yu N, Li J, Bai J, Ding D, Tang Q, et al. Novel “carrier-free” Nanofiber Codelivery systems with the synergistic antitumor effect of paclitaxel and Tetrandrine through the enhancement of mitochondrial apoptosis. ACS Appl Mater Interfaces. 2020;12:10096–106.
Article
CAS
Google Scholar
Huang Z, Wang Y, Yao D, Wu J, Hu Y, Yuan A. Nanoscale coordination polymers induce immunogenic cell death by amplifying radiation therapy mediated oxidative stress. Nat Commun. 2021;12:1–18. https://doi.org/10.1038/s41467-020-20243-8 Springer US.
Article
CAS
Google Scholar
Wang Y, Chen J, Duan R, Gu R, Wang W, Lian H, Hu Y, Yuan A. High-Z-Sensitized Radiotherapy Synergizes with the Intervention of the Pentose Phosphate Pathway for In Situ Tumor Vaccination. Adv Mater. 2022;34;2109726. https://doi.org/10.1002/adma.202109726.
Fang C, Mo F, Liu L, Du J, Luo M, Men K, et al. Oxidized mitochondrial DNA sensing by STING signaling promotes the antitumor effect of an irradiated immunogenic cancer cell vaccine. Cell Mol Immunol. 2020. https://doi.org/10.1038/s41423-020-0456-1 Springer US.
Liu S, Feng M, Guan W. Mitochondrial DNA sensing by STING signaling participates in inflammation, cancer and beyond. Int J Cancer. 2016;139:736–41.
Article
CAS
Google Scholar
Yu CH, Davidson S, Harapas CR, Hilton JB, Mlodzianoski MJ, Laohamonthonkul P, et al. TDP-43 triggers mitochondrial DNA release via mPTP to activate cGAS/STING in ALS. Cell. 2020;183:636–649.e18. https://doi.org/10.1016/j.cell.2020.09.020 Elsevier.
Article
CAS
Google Scholar
Zhou Z, Zhang B, Wang S, Zai W, Yuan A, Hu Y, et al. Perfluorocarbon nanoparticles mediated platelet blocking disrupt vascular barriers to improve the efficacy of oxygen-sensitive antitumor drugs. Small. 2018;14:1–12.
Article
CAS
Google Scholar
Yoo JW, Irvine DJ, Discher DE, Mitragotri S. Bio-inspired, bioengineered and biomimetic drug delivery carriers. Nat rev drug Discov. Nat Publ Group. 2011;10:521–35.
CAS
Google Scholar
Teoh XY, Goh CF, Aminu N, Chan SY. Quantification of atovaquone from amorphous solid dispersion formulation using HPLC: an in vitro and ex vivo investigation. J Pharm Biomed Anal. 2021;192:113631. https://doi.org/10.1016/j.jpba.2020.113631 Elsevier BV.
Article
CAS
Google Scholar
Lindegårdh N, Bergqvist Y. Automated solid-phase extraction method for the determination of atovaquone in plasma and whole blood by rapid high-performance liquid chromatography. J Chromatogr B Biomed Sci Appl. 2000;744:9–17.
Article
Google Scholar