Yu YJ, Watts RJ. Developing therapeutic antibodies for neurodegenerative disease. Neurotherapeutics. 2013;10(3):459–72. https://doi.org/10.1007/s13311-013-0187-4.
Article
CAS
Google Scholar
Eisele YS, Monteiro C, Fearns C, Encalada SE, Wiseman RL, Powers ET, Kelly JW. Targeting protein aggregation for the treatment of degenerative diseases. Nat Rev Drug Discovery. 2015;14(11):759–80. https://doi.org/10.1038/nrd4593.
Article
CAS
Google Scholar
Stein CA, Castanotto D. FDA-Approved Oligonucleotide Therapies in 2017. Mol Ther. 2017;25(5):1069–75. https://doi.org/10.1016/j.ymthe.2017.03.023.
Article
CAS
Google Scholar
Crooke ST, Baker BF, Crooke RM, Liang XH. Antisense technology: an overview and prospectus. Nat Rev Drug Discov. 2021;20(6):427–53. https://doi.org/10.1038/s41573-021-00162-z.
Article
CAS
Google Scholar
Naryshkin NA, Weetall M, Dakka A, Narasimhan J, Zhao X, Feng Z, Ling KKY, Karp GM, Qi H, Woll MG. SMN2 splicing modifiers improve motor function and longevity in mice with spinal muscular atrophy. Science. 2014;345(6197):688–93. https://doi.org/10.1126/science.1250127.
Article
CAS
Google Scholar
Palacino J, Swalley SE, Song C, Cheung AK, Shu L, Zhang X, Van Hoosear M, Shin Y, Chin DN, Keller CG. SMN2 splice modulators enhance U1–pre-mRNA association and rescue SMA mice. Nat Chem Biol. 2015;11(7):511–7. https://doi.org/10.1038/nchembio.1837.
Article
CAS
Google Scholar
O’Toole AS, Miller S, Haines N, Zink MC, Serra MJ. Comprehensive thermodynamic analysis of 3’ double-nucleotide overhangs neighboring Watson-Crick terminal base pairs. Nucleic Acids Res. 2006;34(11):3338–44. https://doi.org/10.1093/nar/gkl428.
Article
CAS
Google Scholar
Kaczmarek JC, Kowalski PS, Anderson DG. Advances in the delivery of RNA therapeutics: from concept to clinical reality. Genome Med. 2017;9(1):60. https://doi.org/10.1186/s13073-017-0450-0.
Article
CAS
Google Scholar
Chery J. RNA therapeutics: RNAi and antisense mechanisms and clinical applications. Postdoc J. 2016;4(7):35–50. https://doi.org/10.14304/surya.jpr.v4n7.5.
Article
Google Scholar
Perry CM, Balfour JAB. Fomivirsen. Drugs. 1999;57(3):375–80. https://doi.org/10.2165/00003495-199957030-00010.
Article
CAS
Google Scholar
Derbis M, Kul E, Niewiadomska D, Sekrecki M, Piasecka A, Taylor K, Hukema RK, Stork O, Sobczak K. Short antisense oligonucleotides alleviate the pleiotropic toxicity of RNA harboring expanded CGG repeats. Nat Commun. 2021;12(1):1265. https://doi.org/10.1038/s41467-021-21021-w.
Article
CAS
Google Scholar
Naveed A, Cooper JA, Li R, Hubbard A, Chen J, Liu T, Wilton SD, Fletcher S, Fox AH. NEAT1 polyA-modulating antisense oligonucleotides reveal opposing functions for both long non-coding RNA isoforms in neuroblastoma. Cell Mol Life Sci. 2021;78(5):2213–30. https://doi.org/10.1007/s00018-020-03632-6.
Article
CAS
Google Scholar
Liang XH, Shen W, Sun H, Migawa MT, Vickers TA, Crooke ST. Translation efficiency of mRNAs is increased by antisense oligonucleotides targeting upstream open reading frames. Nat Biotechnol. 2016;34(8):875–80. https://doi.org/10.1038/nbt.3589.
Article
CAS
Google Scholar
Kumar P, Caruthers MH. DNA Analogues Modified at the Nonlinking Positions of Phosphorus. Acc Chem Res. 2020;53(10):2152–66. https://doi.org/10.1021/acs.accounts.0c00078.
Article
CAS
Google Scholar
Tanaka K, Okuda T, Kasahara Y, Obika S. Base-modified aptamers obtained by cell-internalization SELEX facilitate cellular uptake of an antisense oligonucleotide. Mol Ther Nucleic Acids. 2021;23:440–9. https://doi.org/10.1016/j.omtn.2020.11.016.
Article
CAS
Google Scholar
Linnane E, Davey P, Zhang P, Puri S, Edbrooke M, Chiarparin E, Revenko AS, Macleod AR, Norman JC, Ross SJ. Differential uptake, kinetics and mechanisms of intracellular trafficking of next-generation antisense oligonucleotides across human cancer cell lines. Nucleic Acids Res. 2019;47(9):4375–92. https://doi.org/10.1093/nar/gkz214.
Article
CAS
Google Scholar
Scharner J, Ma WK, Zhang Q, Lin KT, Rigo F, Bennett CF, Krainer AR. Hybridization-mediated off-target effects of splice-switching antisense oligonucleotides. Nucleic Acids Res. 2020;48(2):802–16. https://doi.org/10.1093/nar/gkz1132.
Article
CAS
Google Scholar
Yoshida T, Naito Y, Yasuhara H, Sasaki K, Kawaji H, Kawai J, Naito M, Okuda H, Obika S, Inoue T. Evaluation of off-target effects of gapmer antisense oligonucleotides using human cells. Genes Cells. 2019;24(12):827–35. https://doi.org/10.1111/gtc.12730.
Article
CAS
Google Scholar
Lima WF, Vickers TA, Nichols J, Li C, Crooke ST. Defining the factors that contribute to on-target specificity of antisense oligonucleotides. PLoS ONE. 2014;9(7): e101752. https://doi.org/10.1371/journal.pone.0101752.
Article
CAS
Google Scholar
Gupta A, Andresen JL, Manan RS, Langer R. Nucleic acid delivery for therapeutic applications. Adv Drug Deliv Rev. 2021;178: 113834. https://doi.org/10.1016/j.addr.2021.113834.
Article
CAS
Google Scholar
Bennett CF, Baker BF, Pham N, Swayze E, Geary RS. Pharmacology of Antisense Drugs. Annu Rev Pharmacol Toxicol. 2017;57:81–105. https://doi.org/10.1146/annurev-pharmtox-010716-104846.
Article
CAS
Google Scholar
Liang XH, Nichols JG, Tejera D, Crooke ST. Perinuclear positioning of endosomes can affect PS-ASO activities. Nucleic Acids Res. 2021;49(22):12970–85. https://doi.org/10.1093/nar/gkab1198.
Article
CAS
Google Scholar
Echigoya Y, Trieu N, Duddy W, Moulton HM, Yin H, Partridge TA, Hoffman EP, Kornegay JN, Rohret FA, Rogers CS. A Dystrophin Exon-52 Deleted Miniature Pig Model of Duchenne Muscular Dystrophy and Evaluation of Exon Skipping. Int J Mol Sci 2021, 22(23). https://doi.org/10.3390/ijms222313065
Oh SY, Ju Y, Park H. A highly effective and long-lasting inhibition of miRNAs with PNA-based antisense oligonucleotides. Mol Cells. 2009;28(4):341–5. https://doi.org/10.1007/s10059-009-0134-8.
Article
CAS
Google Scholar
Swayze EE, Siwkowski AM, Wancewicz EV, Migawa MT, Wyrzykiewicz TK, Hung G, Monia BP, Bennett CF. Antisense oligonucleotides containing locked nucleic acid improve potency but cause significant hepatotoxicity in animals. Nucleic Acids Res. 2007;35(2):687–700. https://doi.org/10.1093/nar/gkl1071.
Article
CAS
Google Scholar
Prakash TP, Kawasaki AM, Wancewicz EV, Shen L, Monia BP, Ross BS, Bhat B, Manoharan M. Comparing in vitro and in vivo activity of 2’-O-[2-(methylamino)-2-oxoethyl]- and 2’-O-methoxyethyl-modified antisense oligonucleotides. J Med Chem. 2008;51(9):2766–76. https://doi.org/10.1021/jm701537z.
Article
CAS
Google Scholar
Yin W, Rogge M. Targeting RNA: A Transformative Therapeutic Strategy. Clin Transl Sci. 2019;12(2):98–112. https://doi.org/10.1111/cts.12624.
Article
CAS
Google Scholar
Anderson BA, Freestone GC, Low A, De-Hoyos CL, Iii WJD, Østergaard ME, Migawa MT, Fazio M, Wan WB, Berdeja A. Towards next generation antisense oligonucleotides: mesylphosphoramidate modification improves therapeutic index and duration of effect of gapmer antisense oligonucleotides. Nucleic Acids Res. 2021;49(16):9026–41. https://doi.org/10.1093/nar/gkab718.
Article
CAS
Google Scholar
Castanotto D, Lin M, Kowolik C, Wang L, Ren XQ, Soifer HS, Koch T, Hansen BR, Oerum H, Armstrong B. A cytoplasmic pathway for gapmer antisense oligonucleotide-mediated gene silencing in mammalian cells. Nucleic Acids Res. 2015;43(19):9350–61. https://doi.org/10.1093/nar/gkv964.
Article
CAS
Google Scholar
Bizot F, Vulin A, Goyenvalle A. Current Status of Antisense Oligonucleotide-Based Therapy in Neuromuscular Disorders. Drugs. 2020;80(14):1397–415. https://doi.org/10.1007/s40265-020-01363-3.
Article
CAS
Google Scholar
Watts JK, Corey DR. Silencing disease genes in the laboratory and the clinic. J Pathol. 2012;226(2):365–79. https://doi.org/10.1002/path.2993.
Article
CAS
Google Scholar
Amantana A, Iversen PL. Pharmacokinetics and biodistribution of phosphorodiamidate morpholino antisense oligomers. Curr Opin Pharmacol. 2005;5(5):550–5. https://doi.org/10.1016/j.coph.2005.07.001.
Article
CAS
Google Scholar
Ghosh C, Stein D, Weller D, Iversen P. Evaluation of antisense mechanisms of action. Methods Enzymol. 2000;313:135–43. https://doi.org/10.1016/s0076-6879(00)13008-3.
Article
CAS
Google Scholar
Faria M, Spiller DG, Dubertret C, Nelson JS, White MR, Scherman D, Hélène C, Giovannangeli C. Phosphoramidate oligonucleotides as potent antisense molecules in cells and in vivo. Nat Biotechnol. 2001;19(1):40–4. https://doi.org/10.1038/83489.
Article
CAS
Google Scholar
Jafar-Nejad P, Powers B, Soriano A, Zhao H, Norris DA, Matson J, DeBrosse-Serra B, Watson J, Narayanan P, Chun SJ. The atlas of RNase H antisense oligonucleotide distribution and activity in the CNS of rodents and non-human primates following central administration. Nucleic Acids Res. 2021;49(2):657–73. https://doi.org/10.1093/nar/gkaa1235.
Article
CAS
Google Scholar
Lee JS, Mendell JT. Antisense-Mediated Transcript Knockdown Triggers Premature Transcription Termination. Mol Cell. 2020;77(5):1044-1054.e1043. https://doi.org/10.1016/j.molcel.2019.12.011.
Article
CAS
Google Scholar
Liang XH, Sun H, Shen W, Wang S, Yao J, Migawa MT, Bui HH, Damle SS, Riney S, Graham MJ. Antisense oligonucleotides targeting translation inhibitory elements in 5’ UTRs can selectively increase protein levels. Nucleic Acids Res. 2017;45(16):9528–46. https://doi.org/10.1093/nar/gkx632.
Article
CAS
Google Scholar
Nimesh S, Gupta N, Chandra R. Cationic polymer based nanocarriers for delivery of therapeutic nucleic acids. J Biomed Nanotechnol. 2011;7(4):504–20. https://doi.org/10.1166/jbn.2011.1313.
Article
CAS
Google Scholar
Hayes ME, Drummond DC, Kirpotin DB, Zheng WW, Noble CO, Park JW, Marks JD, Benz CC, Hong K. Genospheres: self-assembling nucleic acid-lipid nanoparticles suitable for targeted gene delivery. Gene Ther. 2006;13(7):646–51. https://doi.org/10.1038/sj.gt.3302699.
Article
CAS
Google Scholar
Colombani T, Peuziat P, Dallet L, Haudebourg T, Mével M, Berchel M, Lambert O, Habrant D, Pitard B. Self-assembling complexes between binary mixtures of lipids with different linkers and nucleic acids promote universal mRNA, DNA and siRNA delivery. J Control Release. 2017;249:131–42. https://doi.org/10.1016/j.jconrel.2017.01.041.
Article
CAS
Google Scholar
Kulkarni JA, Darjuan MM, Mercer JE, Chen S, van der Meel R, Thewalt JL, Tam YYC, Cullis PR. On the Formation and Morphology of Lipid Nanoparticles Containing Ionizable Cationic Lipids and siRNA. ACS Nano. 2018;12(5):4787–95. https://doi.org/10.1021/acsnano.8b01516.
Article
CAS
Google Scholar
Eygeris Y, Gupta M, Kim J, Sahay G. Chemistry of Lipid Nanoparticles for RNA Delivery. Acc Chem Res. 2022;55(1):2–12. https://doi.org/10.1021/acs.accounts.1c00544.
Article
CAS
Google Scholar
Huang H, Zhang C, Yang S, Xiao W, Zheng Q, Song X. The investigation of mRNA vaccines formulated in liposomes administrated in multiple routes against SARS-CoV-2. J Control Release. 2021;335:449–56. https://doi.org/10.1016/j.jconrel.2021.05.024.
Article
CAS
Google Scholar
Khurana A, Allawadhi P, Khurana I, Allwadhi S, Weiskirchen R, Banothu AK, Chhabra D, Joshi K, Bharani KK. Role of nanotechnology behind the success of mRNA vaccines for COVID-19. Nano Today. 2021;38: 101142. https://doi.org/10.1016/j.nantod.2021.101142.
Article
CAS
Google Scholar
Yu M, Zheng J. Clearance Pathways and Tumor Targeting of Imaging Nanoparticles. ACS Nano. 2015;9(7):6655–74. https://doi.org/10.1021/acsnano.5b01320.
Article
CAS
Google Scholar
Li W, Szoka FC Jr. Lipid-based nanoparticles for nucleic acid delivery. Pharm Res. 2007;24(3):438–49. https://doi.org/10.1007/s11095-006-9180-5.
Article
CAS
Google Scholar
Yang L, Ma F, Liu F, Chen J, Zhao X, Xu Q. Efficient Delivery of Antisense Oligonucleotides Using Bioreducible Lipid Nanoparticles In Vitro and In Vivo. Mol Ther Nucleic Acids. 2020;19:1357–67. https://doi.org/10.1016/j.omtn.2020.01.018.
Article
CAS
Google Scholar
Li H, Liu Y, Chen L, Liu Q, Qi S, Cheng X, Lee YB, Ahn CH, Kim DJ, Lee RJ. Folate receptor-targeted lipid-albumin nanoparticles (F-LAN) for therapeutic delivery of an Akt1 antisense oligonucleotide. J Drug Target. 2018;26(5–6):466–73. https://doi.org/10.1080/1061186x.2018.1433678.
Article
CAS
Google Scholar
Cheng X, Yu D, Cheng G, Yung BC, Liu Y, Li H, Kang C, Fang X, Tian S, Zhou X. T7 Peptide-Conjugated Lipid Nanoparticles for Dual Modulation of Bcl-2 and Akt-1 in Lung and Cervical Carcinomas. Mol Pharm. 2018;15(10):4722–32. https://doi.org/10.1021/acs.molpharmaceut.8b00696.
Article
CAS
Google Scholar
Yuan Y, Zhang L, Cao H, Yang Y, Zheng Y, Yang XJ. A Polyethylenimine-Containing and Transferrin-Conjugated Lipid Nanoparticle System for Antisense Oligonucleotide Delivery to AML. Biomed Res Int. 2016;2016:1287128. https://doi.org/10.1155/2016/1287128.
Article
CAS
Google Scholar
Guan J, Pan Y, Li H, Zhu Y, Gao Y, Wang J, Zhou Y, Guan Z, Yang Z. Activity and Tissue Distribution of Antisense Oligonucleotide CT102 Encapsulated with Cytidinyl/Cationic Lipid against Hepatocellular Carcinoma. Mol Pharm. 2022. https://doi.org/10.1021/acs.molpharmaceut.2c00026.
Article
Google Scholar
Lou G, Anderluzzi G, Schmidt ST, Woods S, Gallorini S, Brazzoli M, Giusti F, Ferlenghi I, Johnson RN, Roberts CW. Delivery of self-amplifying mRNA vaccines by cationic lipid nanoparticles: The impact of cationic lipid selection. J Control Release. 2020;325:370–9. https://doi.org/10.1016/j.jconrel.2020.06.027.
Article
CAS
Google Scholar
Kulkarni JA, Witzigmann D, Leung J, Tam YYC, Cullis PR. On the role of helper lipids in lipid nanoparticle formulations of siRNA. Nanoscale. 2019;11(45):21733–9. https://doi.org/10.1039/c9nr09347h.
Article
CAS
Google Scholar
Tanaka H, Takata N, Yoshida Y, Inoue T, Tamagawa S, Nakai Y, Tange K, Yoshioka H, Maeki M. Maeki M. Delivery of Oligonucleotides Using a Self-Degradable Lipid-Like Material. Pharmaceutics. 2021;13(4):544. https://doi.org/10.3390/pharmaceutics13040544.
Article
CAS
Google Scholar
Sicard G, Paris C, Giacometti S, Rodallec A, Ciccolini J, Rocchi P, Fanciullino R. Enhanced Antisense Oligonucleotide Delivery Using Cationic Liposomes Grafted with Trastuzumab: A Proof-of-Concept Study in Prostate Cancer. Pharmaceutics. 2020;12(12):1166. https://doi.org/10.3390/pharmaceutics12121166.
Article
CAS
Google Scholar
Kim ST, Lee KM, Park HJ, Jin SE, Ahn WS, Kim CK. Topical delivery of interleukin-13 antisense oligonucleotides with cationic elastic liposome for the treatment of atopic dermatitis. J Gene Med. 2009;11(1):26–37. https://doi.org/10.1002/jgm.1268.
Article
CAS
Google Scholar
Araújo D, Gaspar R, Mil-Homens D, Henriques M, Silva BFB, Silva S. Cationic lipid-based formulations for encapsulation and delivery of anti-EFG1 2' OMethylRNA oligomer. Med Mycol 2022, 60(5). https://doi.org/10.1093/mmy/myac030
Benizri S, Gaubert A, Soulard C, Gontier É, Svahn I, Rocchi P, Vacher G, Barthélémy P. Hydrogel based lipid-oligonucleotides: a new route to self-delivery of therapeutic sequences. Biomater Sci. 2021;9(10):3638–44. https://doi.org/10.1039/d1bm00273b.
Article
CAS
Google Scholar
Ma Y, Zhao W, Li Y, Pan Y, Wang S, Zhu Y, Kong L, Guan Z, Wang J, Zhang L. Structural optimization and additional targets identification of antisense oligonucleotide G3139 encapsulated in a neutral cytidinyl-lipid combined with a cationic lipid in vitro and in vivo. Biomaterials. 2019;197:182–93. https://doi.org/10.1016/j.biomaterials.2018.12.033.
Article
CAS
Google Scholar
Li H, Xu S, Quan J, Yung BC, Pang J, Zhou C, Cho YA, Zhang M, Liu S, Muthusamy N. CD33-Targeted Lipid Nanoparticles (aCD33LNs) for Therapeutic Delivery of GTI-2040 to Acute Myelogenous Leukemia. Mol Pharm. 2015;12(6):2010–8. https://doi.org/10.1021/mp5008212.
Article
CAS
Google Scholar
Bozzuto G, Molinari A. Liposomes as nanomedical devices. Int J Nanomedicine. 2015;10:975–99. https://doi.org/10.2147/ijn.S68861.
Article
CAS
Google Scholar
Hald Albertsen C, Kulkarni JA, Witzigmann D, Lind M, Petersson K, Simonsen JB. The role of lipid components in lipid nanoparticles for vaccines and gene therapy. Adv Drug Deliv Rev. 2022;188. https://doi.org/10.1016/j.addr.2022.114416.
Algarni A, Pilkington EH, Suys EJA, Al-Wassiti H, Pouton CW, Truong NP. In vivo delivery of plasmid DNA by lipid nanoparticles: the influence of ionizable cationic lipids on organ-selective gene expression. Biomater Sci. 2022;10(11):2940–52. https://doi.org/10.1039/d2bm00168c.
Article
CAS
Google Scholar
Xia Y, Tian J, Chen X. Effect of surface properties on liposomal siRNA delivery. Biomaterials. 2016;79:56–68. https://doi.org/10.1016/j.biomaterials.2015.11.056.
Article
CAS
Google Scholar
Friedl JD, Steinbring C, Zaichik S, Le NN, Bernkop-Schnürch A. Cellular uptake of self-emulsifying drug-delivery systems: polyethylene glycol versus polyglycerol surface. Nanomedicine (Lond). 2020;15(19):1829–41. https://doi.org/10.2217/nnm-2020-0127.
Article
CAS
Google Scholar
Allen RJ, Mathew B, Rice KG. PEG-Peptide Inhibition of Scavenger Receptor Uptake of Nanoparticles by the Liver. Mol Pharm. 2018;15(9):3881–91. https://doi.org/10.1021/acs.molpharmaceut.8b00355.
Article
CAS
Google Scholar
Abu Lila AS, Kiwada H, Ishida T. The accelerated blood clearance (ABC) phenomenon: clinical challenge and approaches to manage. J Control Release. 2013;172(1):38–47. https://doi.org/10.1016/j.jconrel.2013.07.026.
Article
CAS
Google Scholar
Emam SE, Elsadek NE, Abu Lila AS, Takata H, Kawaguchi Y, Shimizu T, Ando H, Ishima Y, Ishida T. Anti-PEG IgM production and accelerated blood clearance phenomenon after the administration of PEGylated exosomes in mice. J Control Release. 2021;334:327–34. https://doi.org/10.1016/j.jconrel.2021.05.001.
Article
CAS
Google Scholar
Kozma GT, Shimizu T, Ishida T, Szebeni J. Anti-PEG antibodies: Properties, formation, testing and role in adverse immune reactions to PEGylated nano-biopharmaceuticals. Adv Drug Deliv Rev. 2020;154–155:163–75. https://doi.org/10.1016/j.addr.2020.07.024.
Article
CAS
Google Scholar
Akbarzadeh A, Rezaei-Sadabady R, Davaran S, Joo SW, Zarghami N, Hanifehpour Y, Samiei M, Kouhi M, Nejati-Koshki K. Liposome: classification, preparation, and applications. Nanoscale Res Lett. 2013;8(1):102. https://doi.org/10.1186/1556-276x-8-102.
Article
Google Scholar
Zhang L, Gu FX, Chan JM, Wang AZ, Langer RS, Farokhzad OC. Nanoparticles in medicine: therapeutic applications and developments. Clin Pharmacol Ther. 2008;83(5):761–9. https://doi.org/10.1038/sj.clpt.6100400.
Article
CAS
Google Scholar
Guan J, Guo H, Tang T, Wang Y, Wei Y, Seth P, Li Y, Dehm SM, Ruoslahti E, Pang HB. iRGD-liposomes enhance tumor delivery and therapeutic efficacy of antisense oligonucleotide drugs against primary prostate cancer and bone metastasis. Adv Funct Mater 2021, 31(24). https://doi.org/10.1002/adfm.202100478
Sicard G, Paris C, Giacometti S, Rodallec A, Ciccolini J, Rocchi P, Fanciullino R. Enhanced Antisense Oligonucleotide Delivery Using Cationic Liposomes Grafted with Trastuzumab: A Proof-of-Concept Study in Prostate Cancer. Pharmaceutics 2020, 12(12). https://doi.org/10.3390/pharmaceutics12121166
Zoulikha M, Xiao Q, Boafo GF, Sallam MA, Chen Z, He W. Pulmonary delivery of siRNA against acute lung injury/acute respiratory distress syndrome. Acta Pharm Sin B. 2022;12(2):600–20. https://doi.org/10.1016/j.apsb.2021.08.009.
Article
CAS
Google Scholar
Mirzaei S, Gholami MH, Ang HL, Hashemi F, Zarrabi A, Zabolian A, et al. Pre-clinical and clinical applications of Small Interfering RNAs (siRNA) and co-delivery systems for pancreatic cancer therapy. Cells. 2021;10(12):3348. https://doi.org/10.3390/cells10123348.
Article
CAS
Google Scholar
Xu CF, Iqbal S, Shen S, Luo YL, Yang X, Wang J. Development of “CLAN” Nanomedicine for Nucleic Acid Therapeutics. Small. 2019;15(16): e1900055. https://doi.org/10.1002/smll.201900055.
Article
CAS
Google Scholar
Chen H, Fang X, Jin Y, Hu X, Yin M, Men X, Chen N, Fan C, Chiu DT, Wan Y. Semiconducting Polymer Nanocavities: Porogenic Synthesis, Tunable Host-Guest Interactions, and Enhanced Drug/siRNA Delivery. Small. 2018;14(21): e1800239. https://doi.org/10.1002/smll.201800239.
Article
CAS
Google Scholar
Date T, Nimbalkar V, Kamat J, Mittal A, Mahato RI, Chitkara D. Lipid-polymer hybrid nanocarriers for delivering cancer therapeutics. J Control Release. 2018;271:60–73. https://doi.org/10.1016/j.jconrel.2017.12.016.
Article
CAS
Google Scholar
Li M, Li Y, Li S, Jia L, Wang H, Li M, Deng J, Zhu A, Ma L, Li W. The nano delivery systems and applications of mRNA. Eur J Med Chem. 2022;227: 113910. https://doi.org/10.1016/j.ejmech.2021.113910.
Article
CAS
Google Scholar
Min HS, Kim HJ, Naito M, Ogura S, Toh K, Hayashi K, Kim BS, Fukushima S, Anraku Y, Miyata K. Systemic Brain Delivery of Antisense Oligonucleotides across the Blood-Brain Barrier with a Glucose-Coated Polymeric Nanocarrier. Angew Chem Int Ed Engl. 2020;59(21):8173–80. https://doi.org/10.1002/anie.201914751.
Article
CAS
Google Scholar
Araújo D, Braz J, Dencheva NV, Carvalho I, Henriques M, Denchev ZZ, Malfois M, Silva S. Polyamide Microsized Particulate Polyplex Carriers for the 2’-OMethylRNA EFG1 Antisense Oligonucleotide. ACS Appl Bio Mater. 2021;4(5):4607–17. https://doi.org/10.1021/acsabm.1c00334.
Article
CAS
Google Scholar
Yang S, Wang D, Sun Y, Zheng B. Delivery of antisense oligonucleotide using polyethylenimine-based lipid nanoparticle modified with cell penetrating peptide. Drug Deliv. 2019;26(1):965–74. https://doi.org/10.1080/10717544.2019.1667453.
Article
CAS
Google Scholar
Springate CM, Jackson JK, Gleave ME, Burt HM. Clusterin antisense complexed with chitosan for controlled intratumoral delivery. Int J Pharm. 2008;350(1–2):53–64. https://doi.org/10.1016/j.ijpharm.2007.08.018.
Article
CAS
Google Scholar
Kilicay E, Karahaliloglu Z, Alpaslan P, Hazer B, Denkbas EB. In vitro evaluation of antisense oligonucleotide functionalized core-shell nanoparticles loaded with α-tocopherol succinate. J Biomater Sci Polym Ed. 2017;28(15):1762–85. https://doi.org/10.1080/09205063.2017.1354670.
Article
CAS
Google Scholar
Li Y, Chen Y, Li J, Zhang Z, Huang C, Lian G, Yang K, Chen S, Lin Y, Wang L. Co-delivery of microRNA-21 antisense oligonucleotides and gemcitabine using nanomedicine for pancreatic cancer therapy. Cancer Sci. 2017;108(7):1493–503. https://doi.org/10.1111/cas.13267.
Article
CAS
Google Scholar
Zhang Y, Lai L, Liu Y, Chen B, Yao J, Zheng P, Pan Q, Zhu W. Biomineralized Cascade Enzyme-Encapsulated ZIF-8 Nanoparticles Combined with Antisense Oligonucleotides for Drug-Resistant Bacteria Treatment. ACS Appl Mater Interfaces. 2022;14(5):6453–64. https://doi.org/10.1021/acsami.1c23808.
Article
CAS
Google Scholar
Venuganti VV, Saraswathy M, Dwivedi C, Kaushik RS, Perumal OP. Topical gene silencing by iontophoretic delivery of an antisense oligonucleotide-dendrimer nanocomplex: the proof of concept in a skin cancer mouse model. Nanoscale. 2015;7(9):3903–14. https://doi.org/10.1039/c4nr05241b.
Article
CAS
Google Scholar
Vaheri A, Pagano JS. Infectious poliovirus RNA: a sensitive method of assay. Virology. 1965;27(3):434–6. https://doi.org/10.1016/0042-6822(65)90126-1.
Article
CAS
Google Scholar
McCutchan JH, Pagano JS. Enchancement of the infectivity of simian virus 40 deoxyribonucleic acid with diethylaminoethyl-dextran. J Natl Cancer Inst. 1968;41(2):351–7.
CAS
Google Scholar
Wang H, Ding S, Zhang Z, Wang L, You Y. Cationic micelle: A promising nanocarrier for gene delivery with high transfection efficiency. J Gene Med. 2019;21(7): e3101. https://doi.org/10.1002/jgm.3101.
Article
CAS
Google Scholar
Lundy BB, Convertine A, Miteva M, Stayton PS. Neutral polymeric micelles for RNA delivery. Bioconjug Chem. 2013;24(3):398–407. https://doi.org/10.1021/bc300486k.
Article
CAS
Google Scholar
Pereira P, Barreira M, Queiroz JA, Veiga F, Sousa F, Figueiras A. Smart micelleplexes as a new therapeutic approach for RNA delivery. Expert Opin Drug Deliv. 2017;14(3):353–71. https://doi.org/10.1080/17425247.2016.1214567.
Article
CAS
Google Scholar
Tamboli V, Mishra GP, Mitrat AK. Polymeric vectors for ocular gene delivery. Ther Deliv. 2011;2(4):523–36. https://doi.org/10.4155/tde.11.20.
Article
CAS
Google Scholar
Zhou J, Liu J, Cheng CJ, Patel TR, Weller CE, Piepmeier JM, Jiang Z, Saltzman WM. Biodegradable poly(amine-co-ester) terpolymers for targeted gene delivery. Nat Mater. 2011;11(1):82–90. https://doi.org/10.1038/nmat3187.
Article
CAS
Google Scholar
Duncan R, Izzo L. Dendrimer biocompatibility and toxicity. Adv Drug Deliv Rev. 2005;57(15):2215–37. https://doi.org/10.1016/j.addr.2005.09.019.
Article
CAS
Google Scholar
Xie L, Liu R, Chen X, He M, Zhang Y, Chen S. Micelles Based on Lysine, Histidine, or Arginine: Designing Structures for Enhanced Drug Delivery. Front Bioeng Biotechnol. 2021;9: 744657. https://doi.org/10.3389/fbioe.2021.744657.
Article
Google Scholar
Ozturk N, Kara A, Gulyuz S, Ozkose UU, Tasdelen MA, Bozkir A, Yilmaz O, Vural I. Exploiting ionisable nature of PEtOx-co-PEI to prepare pH sensitive, doxorubicin-loaded micelles. J Microencapsul. 2020;37(7):467–80. https://doi.org/10.1080/02652048.2020.1792566.
Article
CAS
Google Scholar
Chen Y, Huang Y, Huang H, Luo Z, Zhang Z, Sun R, Wan Z, Sun J, Lu B, Li S. Farnesylthiosalicylic acid-derivatized PEI-based nanocomplex for improved tumor vaccination. Mol Ther Nucleic Acids. 2021;26:594–602. https://doi.org/10.1016/j.omtn.2021.09.006.
Article
CAS
Google Scholar
Qiu Z, Huang J, Liu L, Li C, Cohen Stuart MA, Wang J. Effects of pH on the Formation of PIC Micelles from PAMAM Dendrimers. Langmuir. 2020;36(29):8367–74. https://doi.org/10.1021/acs.langmuir.0c00598.
Article
CAS
Google Scholar
Zhou Z, Guo F, Wang N, Meng M, Li G. Dual pH-sensitive supramolecular micelles from star-shaped PDMAEMA based on β-cyclodextrin for drug release. Int J Biol Macromol. 2018;116:911–9. https://doi.org/10.1016/j.ijbiomac.2018.05.092.
Article
CAS
Google Scholar
Zhu C, Jung S, Meng F, Zhu X, Park TG, Zhong Z. Reduction-responsive cationic biodegradable micelles based on PDMAEMA-SS-PCL-SS-PDMAEMA triblock copolymers for gene delivery. J Control Release. 2011;152(Suppl 1):e188-190. https://doi.org/10.1016/j.jconrel.2011.08.081.
Article
CAS
Google Scholar
Whitfield CJ, Zhang M, Winterwerber P, Wu Y, Ng DYW, Weil T. Functional DNA-Polymer Conjugates. Chem Rev. 2021;121(18):11030–84. https://doi.org/10.1021/acs.chemrev.0c01074.
Article
CAS
Google Scholar
Li J, Men K, Gao Y, Wu J, Lei S, Yang Y, Pan H. Single Micelle Vectors based on Lipid/Block Copolymer Compositions as mRNA Formulations for Efficient Cancer Immunogene Therapy. Mol Pharm. 2021;18(11):4029–45. https://doi.org/10.1021/acs.molpharmaceut.1c00461.
Article
CAS
Google Scholar
Zhang X, Liu B, Yang Z, Zhang C, Li H, Luo X, Luo H, Gao D, Jiang Q, Liu J. Micelles of enzymatically synthesized PEG-poly(amine-co-ester) block copolymers as pH-responsive nanocarriers for docetaxel delivery. Colloids and Surfaces B: Biointerfaces. 2014;115:349–58. https://doi.org/10.1016/j.colsurfb.2013.12.029.
Article
CAS
Google Scholar
Loughrey D, Dahlman JE. Non-liver mRNA Delivery. Acc Chem Res. 2022;55(1):13–23. https://doi.org/10.1021/acs.accounts.1c00601.
Article
CAS
Google Scholar
Zhang D, Atochina-Vasserman EN, Lu J, Maurya DS, Xiao Q, Liu M, Adamson J, Ona N, Reagan EK, Ni H. The Unexpected Importance of the Primary Structure of the Hydrophobic Part of One-Component Ionizable Amphiphilic Janus Dendrimers in Targeted mRNA Delivery Activity. J Am Chem Soc. 2022;144(11):4746–53. https://doi.org/10.1021/jacs.2c00273.
Article
CAS
Google Scholar
Beha MJ, Ryu JS, Kim YS, Chung HJ. Delivery of antisense oligonucleotides using multi-layer coated gold nanoparticles to methicillin-resistant S. aureus for combinatorial treatment. Mater Sci Eng C Mater Biol Appl. 2021;126:112167. https://doi.org/10.1016/j.msec.2021.112167.
Yoshida S, Duong C, Oestergaard M, Fazio M, Chen C, Peralta R, Guo S, Seth PP, Li Y, Beckett L. MXD3 antisense oligonucleotide with superparamagnetic iron oxide nanoparticles: A new targeted approach for neuroblastoma. Nanomedicine. 2020;24: 102127. https://doi.org/10.1016/j.nano.2019.102127.
Article
CAS
Google Scholar
Jiang K, Chen J, Tai L, Liu C, Chen X, Wei G, Lu W, Pan W. Inhibition of post-trabeculectomy fibrosis via topically instilled antisense oligonucleotide complexes co-loaded with fluorouracil. Acta Pharm Sin B. 2020;10(9):1754–68. https://doi.org/10.1016/j.apsb.2020.03.002.
Article
CAS
Google Scholar
Zhang W, Mehta A, Tong Z, Esser L, Voelcker NH. Development of Polymeric Nanoparticles for Blood-Brain Barrier Transfer-Strategies and Challenges. Adv Sci (Weinh). 2021;8(10):2003937. https://doi.org/10.1002/advs.202003937.
Article
CAS
Google Scholar
Kapoor DN, Bhatia A, Kaur R, Sharma R, Kaur G, Dhawan S. PLGA: a unique polymer for drug delivery. Ther Deliv. 2015;6(1):41–58. https://doi.org/10.4155/tde.14.91.
Article
CAS
Google Scholar
Wang T, Upponi JR, Torchilin VP. Design of multifunctional non-viral gene vectors to overcome physiological barriers: dilemmas and strategies. Int J Pharm. 2012;427(1):3–20. https://doi.org/10.1016/j.ijpharm.2011.07.013.
Article
CAS
Google Scholar
Kowalski PS, Rudra A, Miao L, Anderson DG. Delivering the Messenger: Advances in Technologies for Therapeutic mRNA Delivery. Mol Ther. 2019;27(4):710–28. https://doi.org/10.1016/j.ymthe.2019.02.012.
Article
CAS
Google Scholar
Piotrowski-Daspit AS, Kauffman AC, Bracaglia LG, Saltzman WM. Polymeric vehicles for nucleic acid delivery. Adv Drug Deliv Rev. 2020;156:119–32. https://doi.org/10.1016/j.addr.2020.06.014.
Article
CAS
Google Scholar
Bishop CJ, Abubaker-Sharif B, Guiriba T, Tzeng SY, Green JJ. Gene delivery polymer structure-function relationships elucidated via principal component analysis. Chem Commun (Camb). 2015;51(60):12134–7. https://doi.org/10.1039/c5cc04417k.
Article
CAS
Google Scholar
Karlsson J, Rhodes KR, Green JJ, Tzeng SY. Poly(beta-amino ester)s as gene delivery vehicles: challenges and opportunities. Expert Opin Drug Deliv. 2020;17(10):1395–410. https://doi.org/10.1080/17425247.2020.1796628.
Article
CAS
Google Scholar
Kaczmarek JC, Patel AK, Rhym LH, Palmiero UC, Bhat B, Heartlein MW, DeRosa F, Anderson DG. Systemic delivery of mRNA and DNA to the lung using polymer-lipid nanoparticles. Biomaterials. 2021;275: 120966. https://doi.org/10.1016/j.biomaterials.2021.120966.
Article
CAS
Google Scholar
Radchatawedchakoon W, Krajarng A, Niyomtham N, Watanapokasin R, Yingyongnarongkul BE. High transfection efficiency of cationic lipids with asymmetric acyl-cholesteryl hydrophobic tails. Chemistry. 2011;17(11):3287–95. https://doi.org/10.1002/chem.201001622.
Article
CAS
Google Scholar
Puchkov PA, Maslov MA. Lipophilic Polyamines as promising components of Liposomal gene delivery systems. Pharmaceutics. 2021;13(6):920. https://doi.org/10.3390/pharmaceutics13060920.
Article
CAS
Google Scholar
Kauffman AC, Piotrowski-Daspit AS, Nakazawa KH, Jiang Y, Datye A, Saltzman WM. Tunability of Biodegradable Poly(amine- co-ester) Polymers for Customized Nucleic Acid Delivery and Other Biomedical Applications. Biomacromol. 2018;19(9):3861–73. https://doi.org/10.1021/acs.biomac.8b00997.
Article
CAS
Google Scholar
Cui J, Piotrowski-Daspit AS, Zhang J, Shao M, Bracaglia LG, Utsumi T, Seo YE, DiRito J, Song E, Wu C. Poly(amine-co-ester) nanoparticles for effective Nogo-B knockdown in the liver. J Control Release. 2019;304:259–67. https://doi.org/10.1016/j.jconrel.2019.04.044.
Article
CAS
Google Scholar
Chen Z, Lichtor PA, Berliner AP, Chen JC, Liu DR. Evolution of sequence-defined highly functionalized nucleic acid polymers. Nat Chem. 2018;10(4):420–7. https://doi.org/10.1038/s41557-018-0008-9.
Article
CAS
Google Scholar
Kim J, Vaughan HJ, Zamboni CG, Sunshine JC, Green JJ. High-throughput evaluation of polymeric nanoparticles for tissue-targeted gene expression using barcoded plasmid DNA. J Control Release. 2021;337:105–16. https://doi.org/10.1016/j.jconrel.2021.05.047.
Article
CAS
Google Scholar
Wang Y, Luo J, Truebenbach I, Reinhard S, Klein PM, Höhn M, Kern S, Morys S, Loy DM, Wagner E. Double Click-Functionalized siRNA Polyplexes for Gene Silencing in Epidermal Growth Factor Receptor-Positive Tumor Cells. ACS Biomater Sci Eng. 2020;6(2):1074–89. https://doi.org/10.1021/acsbiomaterials.9b01904.
Article
CAS
Google Scholar
Benner NL, McClellan RL, Turlington CR, Haabeth OAW, Waymouth RM, Wender PA. Oligo(serine ester) Charge-Altering Releasable Transporters: Organocatalytic Ring-Opening Polymerization and their Use for in Vitro and in Vivo mRNA Delivery. J Am Chem Soc. 2019;141(21):8416–21. https://doi.org/10.1021/jacs.9b03154.
Article
CAS
Google Scholar
Curtin CM, Tierney EG, McSorley K, Cryan SA, Duffy GP, O’Brien FJ. Combinatorial gene therapy accelerates bone regeneration: non-viral dual delivery of VEGF and BMP2 in a collagen-nanohydroxyapatite scaffold. Adv Healthc Mater. 2015;4(2):223–7. https://doi.org/10.1002/adhm.201400397.
Article
CAS
Google Scholar
Zhang R, Jing W, Chen C, Zhang S, Abdalla M, Sun P, Wang G, You W, Yang Z, Zhang J. Inhaled mRNA Nanoformulation with Biogenic Ribosomal Protein Reverses Established Pulmonary Fibrosis in a Bleomycin-Induced Murine Model. Adv Mater 2022:e2107506. https://doi.org/10.1002/adma.202107506
Zhang X, Qin B, Wang M, Feng J, Zhang C, Zhu C, He S, Liu H, Wang Y, Averick SE. Dual pH-Responsive and Tumor-Targeted Nanoparticle-Mediated Anti-Angiogenesis siRNA Delivery for Tumor Treatment. Int J Nanomedicine. 2022;17:953–67. https://doi.org/10.2147/ijn.S340926.
Article
CAS
Google Scholar
Liu C, Tang C, Yin C. Co-delivery of doxorubicin and siRNA by all-trans retinoic acid conjugated chitosan-based nanocarriers for multiple synergistic antitumor efficacy. Carbohydr Polym. 2022;283: 119097. https://doi.org/10.1016/j.carbpol.2022.119097.
Article
CAS
Google Scholar
Leng Q, Chen L, Lv Y. RNA-based scaffolds for bone regeneration: application and mechanisms of mRNA, miRNA and siRNA. Theranostics. 2020;10(7):3190–205. https://doi.org/10.7150/thno.42640.
Article
CAS
Google Scholar
Badieyan ZS, Berezhanskyy T, Utzinger M, Aneja MK, Emrich D, Erben R, Schüler C, Altpeter P, Ferizi M, Hasenpusch G. Transcript-activated collagen matrix as sustained mRNA delivery system for bone regeneration. J Control Release. 2016;239:137–48. https://doi.org/10.1016/j.jconrel.2016.08.037.
Article
CAS
Google Scholar
Sargazi S, Siddiqui B, Qindeel M, Rahdar A, Bilal M, Behzadmehr R, Mirinejad S, Pandey S. Chitosan nanocarriers for microRNA delivery and detection: A preliminary review with emphasis on cancer. Carbohydr Polym. 2022;290: 119489. https://doi.org/10.1016/j.carbpol.2022.119489.
Article
CAS
Google Scholar
Shanmuganathan R, Edison T, LewisOscar F, Kumar P, Shanmugam S, Pugazhendhi A. Chitosan nanopolymers: An overview of drug delivery against cancer. Int J Biol Macromol. 2019;130:727–36. https://doi.org/10.1016/j.ijbiomac.2019.02.060.
Article
CAS
Google Scholar
Negm NA, Hefni HHH, Abd-Elaal AAA, Badr EA, Abou Kana MTH. Advancement on modification of chitosan biopolymer and its potential applications. Int J Biol Macromol. 2020;152:681–702. https://doi.org/10.1016/j.ijbiomac.2020.02.196.
Article
CAS
Google Scholar
Kolonko AK, Bangel-Ruland N, Goycoolea FM, Weber WM. Chitosan Nanocomplexes for the delivery of ENaC Antisense Oligonucleotides to airway Epithelial cells. Biomolecules. 2020;10(4):553. https://doi.org/10.3390/biom10040553.
Article
CAS
Google Scholar
Budnik V, Ruiz-Canada C, Wendler F. Extracellular vesicles round off communication in the nervous system. Nat Rev Neurosci. 2016;17(3):160–72. https://doi.org/10.1038/nrn.2015.29.
Article
CAS
Google Scholar
Pegtel DM, Gould SJ. Exosomes. Annu Rev Biochem. 2019;88:487–514. https://doi.org/10.1146/annurev-biochem-013118-111902.
Article
CAS
Google Scholar
Tang M, Chen Y, Li B, Sugimoto H, Yang S, Yang C, LeBleu VS, McAndrews KM, Kalluri R. Therapeutic targeting of STAT3 with small interference RNAs and antisense oligonucleotides embedded exosomes in liver fibrosis. Faseb j. 2021;35(5): e21557. https://doi.org/10.1096/fj.202002777RR.
Article
CAS
Google Scholar
Yang J, Luo S, Zhang J, Yu T, Fu Z, Zheng Y, Xu X, Liu C, Fan M, Zhang Z. Exosome-mediated delivery of antisense oligonucleotides targeting alpha-synuclein ameliorates the pathology in a mouse model of Parkinson’s disease. Neurobiol Dis. 2021;148: 105218. https://doi.org/10.1016/j.nbd.2020.105218.
Article
CAS
Google Scholar
Grossen P, Portmann M, Koller E, Duschmalé M, Minz T, Sewing S, Pandya NJ, van Geijtenbeek SK, Ducret A, Kusznir EA. Evaluation of bovine milk extracellular vesicles for the delivery of locked nucleic acid antisense oligonucleotides. Eur J Pharm Biopharm. 2021;158:198–210. https://doi.org/10.1016/j.ejpb.2020.11.012.
Article
CAS
Google Scholar
Atkin-Smith GK, Poon IKH. Disassembly of the Dying: Mechanisms and Functions. Trends Cell Biol. 2017;27(2):151–62. https://doi.org/10.1016/j.tcb.2016.08.011.
Article
CAS
Google Scholar
Wang Y, Pang J, Wang Q, Yan L, Wang L, Xing Z, Wang C, Zhang J, Dong L. Delivering Antisense Oligonucleotides across the Blood-Brain Barrier by Tumor Cell-Derived Small Apoptotic Bodies. Adv Sci (Weinh). 2021;8(13):2004929. https://doi.org/10.1002/advs.202004929.
Article
CAS
Google Scholar
Lamichhane TN, Raiker RS, Jay SM. Exogenous DNA Loading into Extracellular Vesicles via Electroporation is Size-Dependent and Enables Limited Gene Delivery. Mol Pharm. 2015;12(10):3650–7. https://doi.org/10.1021/acs.molpharmaceut.5b00364.
Article
CAS
Google Scholar
Lamichhane TN, Jeyaram A, Patel DB, Parajuli B, Livingston NK, Arumugasaamy N, Schardt JS, Jay SM. Oncogene Knockdown via Active Loading of Small RNAs into Extracellular Vesicles by Sonication. Cell Mol Bioeng. 2016;9(3):315–24. https://doi.org/10.1007/s12195-016-0457-4.
Article
CAS
Google Scholar
Liu L, Bai X, Martikainen MV, Kårlund A, Roponen M, Xu W, Hu G, Tasciotti E, Lehto VP. Cell membrane coating integrity affects the internalization mechanism of biomimetic nanoparticles. Nat Commun. 2021;12(1):5726. https://doi.org/10.1038/s41467-021-26052-x.
Article
CAS
Google Scholar
Parodi A, Molinaro R, Sushnitha M, Evangelopoulos M, Martinez JO, Arrighetti N, Corbo C, Tasciotti E. Bio-inspired engineering of cell- and virus-like nanoparticles for drug delivery. Biomaterials. 2017;147:155–68. https://doi.org/10.1016/j.biomaterials.2017.09.020.
Article
CAS
Google Scholar
Somiya M, Kuroda S. Development of a virus-mimicking nanocarrier for drug delivery systems: The bio-nanocapsule. Adv Drug Deliv Rev. 2015;95:77–89. https://doi.org/10.1016/j.addr.2015.10.003.
Article
CAS
Google Scholar
Kim MG, Park JY, Shim G, Choi HG, Oh YK. Biomimetic DNA nanoballs for oligonucleotide delivery. Biomaterials. 2015;62:155–63. https://doi.org/10.1016/j.biomaterials.2015.04.037.
Article
CAS
Google Scholar
Bobo D, Robinson KJ, Islam J, Thurecht KJ, Corrie SR. Nanoparticle-Based Medicines: A Review of FDA-Approved Materials and Clinical Trials to Date. Pharm Res. 2016;33(10):2373–87. https://doi.org/10.1007/s11095-016-1958-5.
Article
CAS
Google Scholar
Neha D, Momin M, Khan T, Gharat S, Ningthoujam RS, Omri A. Metallic nanoparticles as drug delivery system for the treatment of cancer. Expert Opin Drug Deliv. 2021;18(9):1261–90. https://doi.org/10.1080/17425247.2021.1912008.
Article
CAS
Google Scholar
Alphandéry E. Natural Metallic Nanoparticles for Application in Nano-Oncology. Int J Mol Sci 2020, 21(12). https://doi.org/10.3390/ijms21124412
Lee SWL, Paoletti C, Campisi M, Osaki T, Adriani G, Kamm RD, Mattu C, Chiono V. MicroRNA delivery through nanoparticles. J Control Release. 2019;313:80–95. https://doi.org/10.1016/j.jconrel.2019.10.007.
Article
CAS
Google Scholar
Graczyk A, Pawlowska R, Chworos A. Gold Nanoparticles as Carriers for Functional RNA Nanostructures. Bioconjug Chem. 2021;32(8):1667–74. https://doi.org/10.1021/acs.bioconjchem.1c00211.
Article
CAS
Google Scholar
Gong N, Teng X, Li J, Liang XJ. Antisense Oligonucleotide-Conjugated Nanostructure-Targeting lncRNA MALAT1 Inhibits Cancer Metastasis. ACS Appl Mater Interfaces. 2019;11(1):37–42. https://doi.org/10.1021/acsami.8b18288.
Article
CAS
Google Scholar
Yatvin MB, Weinstein JN, Dennis WH, Blumenthal R. Design of liposomes for enhanced local release of drugs by hyperthermia. Science. 1978;202(4374):1290–3. https://doi.org/10.1126/science.364652.
Article
CAS
Google Scholar
Na K, Sethuraman VT, Bae YH. Stimuli-sensitive polymeric micelles as anticancer drug carriers. Anticancer Agents Med Chem. 2006;6(6):525–35. https://doi.org/10.2174/187152006778699068.
Article
CAS
Google Scholar
Huang Z, Xu H, Meyers AD, Musani AI, Wang L, Tagg R, Barqawi AB, Chen YK. Photodynamic therapy for treatment of solid tumors–potential and technical challenges. Technol Cancer Res Treat. 2008;7(4):309–20. https://doi.org/10.1177/153303460800700405.
Article
CAS
Google Scholar
Cheng X, Gao J, Ding Y, Lu Y, Wei Q, Cui D, Fan J, Li X, Zhu E, Lu Y. Multi-Functional Liposome: A Powerful Theranostic Nano-Platform Enhancing Photodynamic Therapy. Adv Sci (Weinh). 2021;8(16): e2100876. https://doi.org/10.1002/advs.202100876.
Article
CAS
Google Scholar
Sun W, Zhao X, Fan J, Du J, Peng X. Boron Dipyrromethene Nano-Photosensitizers for Anticancer Phototherapies. Small. 2019;15(32): e1804927. https://doi.org/10.1002/smll.201804927.
Article
CAS
Google Scholar
Matsushita-Ishiodori Y, Ohtsuki T. Photoinduced RNA interference. Acc Chem Res. 2012;45(7):1039–47. https://doi.org/10.1021/ar200227n.
Article
CAS
Google Scholar
Chen L, Li G, Wang X, Li J, Zhang Y. Spherical Nucleic Acids for Near-Infrared Light-Responsive Self-Delivery of Small-Interfering RNA and Antisense Oligonucleotide. ACS Nano. 2021;15(7):11929–39. https://doi.org/10.1021/acsnano.1c03072.
Article
CAS
Google Scholar
Fliervoet LAL, Zhang H, van Groesen E, Fortuin K, Duin N, Remaut K, Schiffelers RM, Hennink WE, Vermonden T. Local release of siRNA using polyplex-loaded thermosensitive hydrogels. Nanoscale. 2020;12(18):10347–60. https://doi.org/10.1039/d0nr03147j.
Article
CAS
Google Scholar
Shi Z, Li SK, Charoenputtakun P, Liu CY, Jasinski D, Guo P. RNA nanoparticle distribution and clearance in the eye after subconjunctival injection with and without thermosensitive hydrogels. J Control Release. 2018;270:14–22. https://doi.org/10.1016/j.jconrel.2017.11.028.
Article
CAS
Google Scholar
Wang C, Wang X, Du L, Dong Y, Hu B, Zhou J, Shi Y, Bai S, Huang Y, Cao H. Harnessing pH-Sensitive Polycation Vehicles for the Efficient siRNA Delivery. ACS Appl Mater Interfaces. 2021;13(2):2218–29. https://doi.org/10.1021/acsami.0c17866.
Article
CAS
Google Scholar
Wang P, Yin T, Li J, Zheng B, Wang X, Wang Y, Zheng J, Zheng R, Shuai X. Ultrasound-responsive microbubbles for sonography-guided siRNA delivery. Nanomedicine. 2016;12(4):1139–49. https://doi.org/10.1016/j.nano.2015.12.361.
Article
CAS
Google Scholar
Du XJ, Wang ZY, Wang YC. Redox-sensitive dendrimersomes assembled from amphiphilic Janus dendrimers for siRNA delivery. Biomater Sci. 2018;6(8):2122–9. https://doi.org/10.1039/c8bm00491a.
Article
CAS
Google Scholar
Dalmina M, Pittella F, Sierra JA, Souza GRR, Silva AH, Pasa AA, Creczynski-Pasa TB. Magnetically responsive hybrid nanoparticles for in vitro siRNA delivery to breast cancer cells. Mater Sci Eng C Mater Biol Appl. 2019;99:1182–90. https://doi.org/10.1016/j.msec.2019.02.026.
Article
CAS
Google Scholar
Wang Y, Yu RZ, Henry S, Geary RS. Pharmacokinetics and Clinical Pharmacology Considerations of GalNAc(3)-Conjugated Antisense Oligonucleotides. Expert Opin Drug Metab Toxicol. 2019;15(6):475–85. https://doi.org/10.1080/17425255.2019.1621838.
Article
CAS
Google Scholar
Craig K, Abrams M, Amiji M. Recent preclinical and clinical advances in oligonucleotide conjugates. Expert Opin Drug Deliv. 2018;15(6):629–40. https://doi.org/10.1080/17425247.2018.1473375.
Article
CAS
Google Scholar
Yu RZ, Gunawan R, Post N, Zanardi T, Hall S, Burkey J, Kim TW, Graham MJ, Prakash TP, Seth PP. Disposition and Pharmacokinetics of a GalNAc3-Conjugated Antisense Oligonucleotide Targeting Human Lipoprotein (a) in Monkeys. Nucleic Acid Ther. 2016;26(6):372–80. https://doi.org/10.1089/nat.2016.0623.
Article
CAS
Google Scholar
Kay E, Stulz R, Becquart C, Lovric J, Tängemo C, Thomen A, Baždarević D, Najafinobar N, Dahlén A, Pielach A. NanoSIMS Imaging Reveals the Impact of Ligand-ASO Conjugate Stability on ASO Subcellular Distribution. Pharmaceutics 2022, 14(2). https://doi.org/10.3390/pharmaceutics14020463
Echevarría L, Goyenvalle A. Preclinical Evaluation of the Renal Toxicity of Oligonucleotide Therapeutics in Mice. Methods in molecular biology (Clifton, NJ). 2022;2434:371–84. https://doi.org/10.1007/978-1-0716-2010-6_26.
Article
Google Scholar
Migliorati JM, Liu S, Liu A, Gogate A, Nair S. Bahal R Rasmussen TP Manautou JE Zhong X-b. Absorption, Distribution, Metabolism, and Excretion of US Food and Drug Administration-Approved Antisense Oligonucleotide Drugs Drug Metabolism and Disposition. 2022;50(6):888–97. https://doi.org/10.1124/dmd.121.000417.
Article
CAS
Google Scholar
Nishi R, Ohyagi M, Nagata T, Mabuchi Y, Yokota T. Regulation of activated microglia and macrophages by systemically administered DNA/RNA heteroduplex oligonucleotides. Mol Ther. 2022;30(6):2210–23. https://doi.org/10.1016/j.ymthe.2022.02.019.
Article
CAS
Google Scholar
Packard BZ, Wrightson JA Jr, Komoriya A. An Oligonucleotide Delivery Platform to Enable Assessment of Intracellular Transcripts in Live Cells by Flow Cytometry. Cytometry A. 2020;97(9):945–54. https://doi.org/10.1002/cyto.a.24174.
Article
CAS
Google Scholar
Liang XH, Nichols JG, De Hoyos CL, Sun H, Zhang L, Crooke ST. Golgi-58K can re-localize to late endosomes upon cellular uptake of PS-ASOs and facilitates endosomal release of ASOs. Nucleic Acids Res. 2021;49(14):8277–93. https://doi.org/10.1093/nar/gkab599.
Article
CAS
Google Scholar
Crooke ST, Baker BF, Kwoh TJ, Cheng W, Schulz DJ, Xia S, Salgado N, Bui HH, Hart CE, Burel SA. Integrated Safety Assessment of 2’-O-Methoxyethyl Chimeric Antisense Oligonucleotides in NonHuman Primates and Healthy Human Volunteers. Mol Ther. 2016;24(10):1771–82. https://doi.org/10.1038/mt.2016.136.
Article
CAS
Google Scholar
Chi X, Gatti P, Papoian T. Safety of antisense oligonucleotide and siRNA-based therapeutics. Drug Discovery Today. 2017;22(5):823–33. https://doi.org/10.1016/j.drudis.2017.01.013.
Article
CAS
Google Scholar
Huang L, Low A, Damle SS, Keenan MM, Kuntz S, Murray SF, Monia BP, Guo S. Antisense suppression of the nonsense mediated decay factor Upf3b as a potential treatment for diseases caused by nonsense mutations. Genome Biol. 2018;19(1):4. https://doi.org/10.1186/s13059-017-1386-9.
Article
CAS
Google Scholar
Bennett CF. Therapeutic Antisense Oligonucleotides Are Coming of Age. Annu Rev Med. 2019;70:307–21. https://doi.org/10.1146/annurev-med-041217-010829.
Article
CAS
Google Scholar
Tsimikas S, Karwatowska-Prokopczuk E, Gouni-Berthold I, Tardif JC, Baum SJ, Steinhagen-Thiessen E, Shapiro MD, Stroes ES, Moriarty PM, Nordestgaard BG. Lipoprotein(a) Reduction in Persons with Cardiovascular Disease. N Engl J Med. 2020;382(3):244–55. https://doi.org/10.1056/NEJMoa1905239.
Article
CAS
Google Scholar
Sreeharsha N, Chitrapriya N, Jang YJ, Kenchappa V. Evaluation of nanoparticle drug-delivery systems used in preclinical studies. Ther Deliv. 2021;12(4):325–36. https://doi.org/10.4155/tde-2020-0116.
Article
CAS
Google Scholar
Bae YH, Park K. Advanced drug delivery 2020 and beyond: Perspectives on the future. Adv Drug Deliv Rev. 2020;158:4–16. https://doi.org/10.1016/j.addr.2020.06.018.
Article
CAS
Google Scholar
Harloff-Helleberg S, Nielsen LH, Nielsen HM. Animal models for evaluation of oral delivery of biopharmaceuticals. J Control Release. 2017;268:57–71. https://doi.org/10.1016/j.jconrel.2017.09.025.
Article
CAS
Google Scholar
Shanks N, Greek R, Greek J. Are animal models predictive for humans? Philosophy. Ethics, and Humanities in Medicine. 2009;4(1):2. https://doi.org/10.1186/1747-5341-4-2.
Article
Google Scholar
Xu S, Yang K, Li R, Zhang L. mRNA Vaccine Era-Mechanisms, Drug Platform and Clinical Prospection. Int J Mol Sci 2020, 21(18). https://doi.org/10.3390/ijms21186582
Vargason AM, Anselmo AC, Mitragotri S. The evolution of commercial drug delivery technologies. Nat Biomed Eng. 2021;5(9):951–67. https://doi.org/10.1038/s41551-021-00698-w.
Article
Google Scholar
Farjadian F, Ghasemi A, Gohari O, Roointan A, Karimi M, Hamblin MR. Nanopharmaceuticals and nanomedicines currently on the market: challenges and opportunities. Nanomedicine (Lond). 2019;14(1):93–126. https://doi.org/10.2217/nnm-2018-0120.
Article
CAS
Google Scholar