Biehl JK, Russell B. Introduction to stem cell therapy. J Cardiovasc Nurs. 2009;24(2):98–103. https://doi.org/10.1097/Jcn.0b013e318197a6a5.
Article
Google Scholar
Mirzaei H, Sahebkar A, Sichani LS, Moridikia A, Nazari S, Sadri Nahand J, et al. Therapeutic application of multipotent stem cells. J Cell Physiol. 2017;233(4):2815–23. https://doi.org/10.1002/jcp.25990.
Article
CAS
Google Scholar
Kwon JS, Kim SW, Kwon DY, Park SH, Son AR, Kim JH, et al. In vivo osteogenic differentiation of human turbinate mesenchymal stem cells in an injectable in situ-forming hydrogel. Biomaterials. 2014;35(20):5337–46. https://doi.org/10.1016/j.biomaterials.2014.03.045.
Article
CAS
Google Scholar
Lambrechts T, Papantoniou I, Viazzi S, Bovy T, Schrooten J, Luyten FP, et al. Evaluation of a monitored multiplate bioreactor for large-scale expansion of human periosteum derived stem cells for bone tissue engineering applications. Biochem Eng J. 2016;108:58–68. https://doi.org/10.1016/j.bej.2015.07.015.
Article
CAS
Google Scholar
de Sousa EB, Casado PL, Neto VM, Duarte MEL, Aguiar DP. Synovial fluid and synovial membrane mesenchymal stem cells: latest discoveries and therapeutic perspectives. Stem Cell Res Ther. 2014;5(5):112. https://doi.org/10.1186/Scrt501.
Article
Google Scholar
Tsuji W, Rubin JP, Marra KG. Adipose-derived stem cells: implications in tissue regeneration. World J Stem Cells. 2014;6(3):312–21. https://doi.org/10.4252/wjsc.v6.i3.312.
Article
Google Scholar
Harasymiak-Krzyzanowska I, Niedojadlo A, Karwat J, Kotula L, Gil-Kulik P, Sawiuk M, et al. Adipose tissue-derived stem cells show considerable promise for regenerative medicine applications. Cell Mol Biol Lett. 2013;18(4):479–93. https://doi.org/10.2478/s11658-013-0101-4.
Article
CAS
Google Scholar
Frese L, Dijkman PE, Hoerstrup SP. Adipose tissue-derived stem cells in regenerative medicine. Transfus Med Hemother. 2016;43(4):268–74. https://doi.org/10.1159/000448180.
Article
Google Scholar
Spasovski D, Spasovski V, Bascarevic Z, Stojiljkovic M, Vreca M, Andjelkovic M, et al. Intra-articular injection of autologous adipose derived Mesenchymal stem cells in treatment of knee osteoarthritis. J Gene Med. 2017;20(1). https://doi.org/10.1002/jgm.3002.
Li G, Miao F, Zhu J, Chen Y. Antiangiogenesis gene therapy for hepatocellular carcinoma via systemic injection of mesenchymal stem cells engineered to secrete soluble Flt1. Mol Med Rep. 2017;16(5):5799–806. https://doi.org/10.3892/mmr.2017.7310.
Article
CAS
Google Scholar
Bhowmick S, Scharnweber D, Koul V. Co-cultivation of keratinocyte-human mesenchymal stem cell (hMSC) on sericin loaded electrospun nanofibrous composite scaffold (cationic gelatin/hyaluronan/chondroitin sulfate) stimulates epithelial differentiation in hMSCs: in vitro study. Biomaterials. 2016;88:83–96. https://doi.org/10.1016/j.biomaterials.2016.02.034.
Article
CAS
Google Scholar
Ramirez-Rodriguez GB, Montesi M, Panseri S, Sprio S, Tampieri A. Sandri M: (*) biomineralized recombinant collagen-based scaffold mimicking native bone enhances Mesenchymal stem cell interaction and differentiation. Tissue Eng A. 2017;23(23–24):1423–35. https://doi.org/10.1089/ten.TEA.2017.0028.
Article
CAS
Google Scholar
Zhou W, Han C, Song Y, Yan X, Li D, Chai Z, et al. The performance of bone marrow mesenchymal stem cell--implant complexes prepared by cell sheet engineering techniques. Biomaterials. 2010;31(12):3212–21. https://doi.org/10.1016/j.biomaterials.2010.01.036.
Article
CAS
Google Scholar
Sukho P, Cohen A, Hesselink JW, Kirpensteijn J, Verseijden F, Bastiaansen-Jenniskens YM. Adipose tissue-derived stem cell sheet application for tissue healing in vivo: a systematic review. Tissue Eng Part B Rev. 2017. https://doi.org/10.1089/ten.TEB.2017.0142.
Zhang J, Huang XW, Wang HJ, Liu XY, Zhang T, Wang YC, et al. The challenges and promises of allogeneic mesenchymal stem cells for use as a cell-based therapy. Stem Cell Res Ther. 2015;6(1):234. https://doi.org/10.1186/S13287-015-0240-9.
Article
Google Scholar
Nystedt J, Anderson H, Tikkanen J, Pietila M, Hirvonen T, Takalo R, et al. Cell surface structures influence lung clearance rate of systemically infused mesenchymal stromal cells. Stem Cells. 2013;31(2):317–26. https://doi.org/10.1002/stem.1271.
Article
CAS
Google Scholar
Alaribe FN, Manoto SL, Motaung SCKM. Scaffolds from biomaterials: advantages and limitations in bone and tissue engineering. Biologia. 2016;71(4):353–66. https://doi.org/10.1515/biolog-2016-0056.
Article
Google Scholar
Zhang S, Liu P, Chen L, Wang Y, Wang Z, Zhang B. The effects of spheroid formation of adipose-derived stem cells in a microgravity bioreactor on stemness properties and therapeutic potential. Biomaterials. 2015;41:15–25. https://doi.org/10.1016/j.biomaterials.2014.11.019.
Article
CAS
Google Scholar
Farahani E, Patra HK, Jangamreddy JR, Rashedi I, Kawalec M, Pariti RKR, et al. Cell adhesion molecules and their relation to (cancer) cell stemness. Carcinogenesis. 2014;35(4):747–59. https://doi.org/10.1093/carcin/bgu045.
Article
CAS
Google Scholar
Prata FP, Cerqueira MT, Moreira-Silva J, Pirraco RP, Reis RL, Marques AP. Cryopreservation of cell sheets of adipose stem cells: limitations and successes. Tissue Eng Part A. 2014;20:S117.
Google Scholar
Owaki T, Shimizu T, Yamato M, Okano T. Cell sheet engineering for regenerative medicine: current challenges and strategies. Biotechnol J. 2014;9(7):904–14. https://doi.org/10.1002/biot.201300432.
Article
CAS
Google Scholar
Rayatpisheh S, Heath DE, Shakouri A, Rujitanaroj PO, Chew SY, Chan-Park MB. Combining cell sheet technology and electrospun scaffolding for engineered tubular, aligned, and contractile blood vessels. Biomaterials. 2014;35(9):2713–9. https://doi.org/10.1016/j.biomaterials.2013.12.035.
Article
CAS
Google Scholar
Zhang LJ, Xing Q, Qian ZC, Tahtinen M, Zhang ZQ, Shearier E, et al. Hypoxia created human Mesenchymal stem cell sheet for Prevascularized 3D tissue construction. Adv Healthc Mat. 2016;5(3):342–52. https://doi.org/10.1002/adhm.201500744.
Article
CAS
Google Scholar
Gong X, Lin C, Cheng J, Su JS, Zhao H, Liu TL, et al. Generation of multicellular tumor spheroids with microwell-based agarose scaffolds for drug testing. Plos One. 2015;10(6). https://doi.org/10.1371/journal.pone.0130348.
Kuo CT, Wang JY, Lin YF, Wo AM, Chen BPC, Lee H. Three-dimensional spheroid culture targeting versatile tissue bioassays using a PDMS-based hanging drop array. Sci Rep. 2017;7(1). https://doi.org/10.1038/S41598-017-04718-1.
Ahmad T, Lee J, Shin YM, Shin HJ, Perikamana SKM, Park SH, et al. Hybrid-spheroids incorporating ECM like engineered fragmented fibers potentiate stem cell function by improved cell/cell and cell/ECM interactions. Acta Biomater. 2017;64:161–75. https://doi.org/10.1016/j.actbio.2017.10.022.
Article
CAS
Google Scholar
Achilli TM, Meyer J, Morgan JR. Advances in the formation, use and understanding of multi-cellular spheroids. Expert Opin Biol Ther. 2012;12(10):1347–60. https://doi.org/10.1517/14712598.2012.707181.
Article
CAS
Google Scholar
Laschke MW, Schank TE, Scheuer C, Kleer S, Shadmanov T, Eglin D, et al. In vitro osteogenic differentiation of adipose-derived mesenchymal stem cell spheroids impairs their in vivo vascularization capacity inside implanted porous polyurethane scaffolds. Acta Biomater. 2014;10(10):4226–35. https://doi.org/10.1016/j.actbio.2014.06.035.
Article
CAS
Google Scholar
Massai D, Isu G, Madeddu D, Cerino G, Falco A, Frati C, et al. A versatile bioreactor for dynamic suspension cell culture. application to the culture of cancer cell spheroids. Plos One. 2016;11(5). https://doi.org/10.1371/journal.pone.0154610.
Baraniak PR, McDevitt TC. Scaffold-free culture of mesenchymal stem cell spheroids in suspension preserves multilineage potential. Cell Tissue Res. 2012;347(3):701–11. https://doi.org/10.1007/s00441-011-1215-5.
Article
CAS
Google Scholar
Lou YR, Kanninen L, Kaehr B, Townson JL, Niklander J, Harjumaki R, et al. Silica bioreplication preserves three-dimensional spheroid structures of human pluripotent stem cells and HepG2 cells. Sci Rep. 2015;5(1). https://doi.org/10.1038/Srep13635.
Baraniak PR, Cooke MT, Saeed R, Kinney MA, Fridley KM, McDevitt TC. Stiffening of human mesenchymal stem cell spheroid microenvironments induced by incorporation of gelatin microparticles. J Mech Behav Biomed Mater. 2012;11:63–71. https://doi.org/10.1016/j.jmbbm.2012.02.018.
Article
CAS
Google Scholar
Wei JJ, Lu JF, Liu YW, Yan SL, Li XH. Spheroid culture of primary hepatocytes with short fibers as a predictable in vitro model for drug screening. J Mater Chem B. 2016;4(44):7155–67. https://doi.org/10.1039/c6tb02014c.
Article
CAS
Google Scholar
Qiu YY, Chen Y, Zeng TH, Guo WZ, Zhou WY, Yang XJ. EGCG ameliorates the hypoxia-induced apoptosis and osteogenic differentiation reduction of mesenchymal stem cells via upregulating miR-210. Mol Biol Rep. 2016;43(3):183–93. https://doi.org/10.1007/s11033-015-3936-0.
Article
CAS
Google Scholar
Binder BYK, Sagun JE, Leach JK. Reduced serum and hypoxic culture conditions enhance the Osteogenic potential of human Mesenchymal stem cells. Stem Cell Rev Rep. 2015;11(3):387–93. https://doi.org/10.1007/s12015-014-9555-7.
Article
CAS
Google Scholar
Murphy KC, Hoch AI, Harvestine JN, Zhou DJ, Leach JK. Mesenchymal stem cell spheroids retain Osteogenic phenotype through alpha (2) beta (1) signaling. Stem Cells Transl Med. 2016;5(9):1229–37. https://doi.org/10.5966/sctm.2015-0412.
Article
CAS
Google Scholar
Zhang SC, Liu P, Chen L, Wang YJ, Wang ZG, Zhang B. The effects of spheroid formation of adipose-derived stem cells in a microgravity bioreactor on sternness properties and therapeutic potential. Biomaterials. 2015;41:15–25. https://doi.org/10.1016/j.biomaterials.2014.11.019.
Article
CAS
Google Scholar
Heiss M, Hellstrom M, Kalen M, May T, Weber H, Hecker M, et al. Endothelial cell spheroids as a versatile tool to study angiogenesis in vitro. FASEB J. 2015;29(7):3076–84. https://doi.org/10.1096/fj.14-267633.
Article
CAS
Google Scholar
Kirn TG, Park SH, Chung HJ, Yang DY, Park TG. Hierarchically assembled Mesenchymal stem cell spheroids using biomimicking Nanofilaments and microstructured scaffolds for vascularized adipose tissue engineering. Adv Funct Mater. 2010;20(14):2303–9. https://doi.org/10.1002/adfm.201000458.
Article
CAS
Google Scholar
Yamada M, Hori A, Sugaya S, Yajima Y, Utoh R, Yamato M, et al. Cell-sized condensed collagen microparticles for preparing microengineered composite spheroids of primary hepatocytes. Lab Chip. 2015;15(19):3941–51. https://doi.org/10.1039/c5lc00785b.
Article
CAS
Google Scholar
Song M, Liu Y, Hui L. Preparation and characterization of acellular adipose tissue matrix using a combination of physical and chemical treatments. Mol Med Rep. 2018;17(1):138–46. https://doi.org/10.3892/mmr.2017.7857.
Article
CAS
Google Scholar
Nisbet DR, Forsythe JS, Shen W, Finkelstein DI, Horne MK. Review paper: a review of the cellular response on electrospun Nanofibers for tissue engineering. J Biomater Appl. 2009;24(1):7–29. https://doi.org/10.1177/0885328208099086.
Article
CAS
Google Scholar
de Girolamo L, Sartori MF, Albisetti W, Brini AT. Osteogenic differentiation of human adipose-derived stem cells: comparison of two different inductive media. J Tissue Eng Regen Med. 2007;1(2):154–7. https://doi.org/10.1002/term.12.
Article
CAS
Google Scholar
Zou J, Wang WW, Neffe AT, Xu X, Li ZD, Deng ZJ, et al. Adipogenic differentiation of human adipose derived mesenchymal stem cells in 3D architectured gelatin based hydrogels (ArcGel). Clin Hemorheol Microcirc. 2017;67(3–4):297–307. https://doi.org/10.3233/Ch-179210.
Article
CAS
Google Scholar
Goh BS, Omar SNC, Ubaidah MA, Saim L, Sulaiman S, Chua KH. Chondrogenesis of human adipose derived stem cells for future microtia repair using co-culture technique. Acta Otolaryngol. 2017;137(4):432–41. https://doi.org/10.1080/00016489.2016.1257151.
Article
CAS
Google Scholar
Gao S, Zhao P, Lin C, Sun YX, Wang YL, Zhou ZC, et al. Differentiation of human adipose-derived stem cells into neuron-like cells which are compatible with Photocurable three-dimensional scaffolds. Tissue Eng A. 2014;20(7–8):1271–84. https://doi.org/10.1089/ten.tea.2012.0773.
Article
CAS
Google Scholar
Perikamana SKM, Lee J, Lee YB, Shin YM, Lee EJ, Mikos AG, et al. Materials from mussel-inspired chemistry for cell and tissue engineering applications. Biomacromolecules. 2015;16(9):2541–55. https://doi.org/10.1021/acs.biomac.5b00852.
Article
CAS
Google Scholar
Hiraishi N, Kaneko D, Taira S, Wang SQ, Otsuki M, Tagami J. Mussel-mimetic, bioadhesive polymers from plant-derived materials. J Invest Clin Dent. 2015;6(1). https://doi.org/10.1111/jicd.12054.
Shin JY, Park J, Jang HK, Lee TJ, La WG, Bhang SH, et al. Efficient formation of cell spheroids using polymer nanofibers. Biotechnol Lett. 2012;34(5):795–803. https://doi.org/10.1007/s10529-011-0836-9.
Article
CAS
Google Scholar
Ma W, Tavakoli T, Derby E, Serebryakova Y, Rao MS, Mattson MP. Cell-extracellular matrix interactions regulate neural differentiation of human embryonic stem cells. BMC Dev Biol. 2008;8(1):90. https://doi.org/10.1186/1471-213x-8-90.
Article
Google Scholar
Naugle JE, Olson ER, Zhang XJ, Mase SE, Pilati CF, Maron MB, et al. Type VI collagen induces cardiac myofibroblast differentiation: implications for postinfarction remodeling. Am J Phys Heart Circ Phys. 2006;290(1):H323–30. https://doi.org/10.1152/ajpheart.00321.2005.
Article
CAS
Google Scholar
Nunez R, Sancho-Martinez SM, Novoa JML, Lopez-Hernandez FJ. Apoptotic volume decrease as a geometric determinant for cell dismantling into apoptotic bodies. Cell Death Differ. 2010;17(11):1665–71. https://doi.org/10.1038/cdd.2010.96.
Article
CAS
Google Scholar
Cesarz Z, Tamama K. Spheroid culture of Mesenchymal stem cells. Stem Cells Int. 2016;2016:1–11. https://doi.org/10.1155/2016/9176357.
Article
Google Scholar
Langan LM, Dodd NJF, Owen SF, Purcell WM, Jackson SK, Jha AN. Direct measurements of oxygen gradients in spheroid culture system using electron parametric resonance oximetry. Plos One. 2016;11(2). https://doi.org/10.1371/journal.pone.0149492.
Lai ZB, Kalkunte S, Sharma S. A critical role of Interleukin-10 in modulating hypoxia-induced preeclampsia-like disease in mice. Hypertension. 2011;57(3):505–U310. https://doi.org/10.1161/Hypertensionaha.110.163329.
Article
CAS
Google Scholar
Vasilevskaya IA, Selvakumaran M, Roberts D, O'Dwyer PJ. JNK1 inhibition attenuates hypoxia-induced autophagy and sensitizes to chemotherapy. Mol Cancer Res. 2016;14(8):753–63. https://doi.org/10.1158/1541-7786.MCR-16-0035.
Article
CAS
Google Scholar
Fink SL, Cookson BT. Apoptosis, pyroptosis, and necrosis: mechanistic description of dead and dying eukaryotic cells. Infect Immun. 2005;73(4):1907–16. https://doi.org/10.1128/Iai.73.4.1907-1916.2005.
Article
CAS
Google Scholar
Noto A, Raffa S, De Vitis C, Roscilli G, Malpicci D, Coluccia P, et al. Stearoyl-CoA desaturase-1 is a key factor for lung cancer-initiating cells. Cell Death Dis. 2013;4(12):e947. https://doi.org/10.1038/cddis.2013.444.
Article
CAS
Google Scholar
Kessler M, Hoffmann K, Brinkmann V, Thieck O, Jackisch S, Toelle B, et al. The notch and Wnt pathways regulate stemness and differentiation in human fallopian tube organoids. Nat Commun. 2015;6(1):8989. https://doi.org/10.1038/Ncomms9989.
Article
CAS
Google Scholar
Jeong Y, Mangelsdorf DJ. Nuclear receptor regulation of stemness and stem cell differentiation. Exp Mol Med. 2009;41(8):525–37. https://doi.org/10.3858/emm.2009.41.8.091.
Article
CAS
Google Scholar
Sbrana FV, Cortini M, Avnet S, Perut F, Columbaro M, De Milito A, et al. The role of autophagy in the maintenance of Stemness and differentiation of Mesenchymal stem cells. Stem Cell Rev Rep. 2016;12(6):621–33. https://doi.org/10.1007/s12015-016-9690-4.
Article
CAS
Google Scholar
Li Y, Guo G, Li L, Chen F, Bao J, Shi YJ, et al. Three-dimensional spheroid culture of human umbilical cord mesenchymal stem cells promotes cell yield and stemness maintenance. Cell Tissue Res. 2015;360(2):297–307. https://doi.org/10.1007/s00441-014-2055-x.
Article
CAS
Google Scholar
Nan L, Xu LA. The hypoxia-induced secretion of PDGF-BB by Hepatocellular Carcinoma Cells Increases Activated Hepatic Stellate Cell Proliferation, Migration and VEGF-A Expression. Hepatology. 2013;58:1086a.
Google Scholar
Hu DN, Rosen RB, Iacob CE. Hypoxia induces VEGF secretion in uveal melanocytes through increased protein levels of hypoxia-inducible factors-1 alpha. Invest Ophthalmol Visual Sci. 2015;56:7.
Article
Google Scholar
Kim JH, Yoon SM, Song SU, Park SG, Kim WS, Park IG, et al. Hypoxia Suppresses Spontaneous Mineralization and Osteogenic Differentiation of Mesenchymal Stem Cells via IGFBP3 Up-Regulation. Int J Mol Sci. 2016;17(9). https://doi.org/10.3390/Ijms17091389.