Zou C, Ma J, Wang X, Guo L, Zhu Z, Stoops J, et al. Lack of Fas antagonism by met in human fatty liver disease. Nat Med. 2007;13(9):1078–85.
Article
CAS
Google Scholar
Fausto N, Mead JE, Braun L, Thompson NL, Panzica M, Goyette M, et al. Proto-oncogene expression and growth factors during liver regeneration. In: Symposium on Fundamental Cancer Research; 1986. p. 69–86.
Google Scholar
Michalopoulos GK, Bhushan B. Liver regeneration: biological and pathological mechanisms and implications. Nat Rev Gastroenterol Hepatol. 2020:1–16.
Tanaka EM, Reddien PW. The cellular basis for animal regeneration. Dev Cell. 2011;21(1):172–85.
Article
CAS
Google Scholar
Tsochatzis EA, Bosch J, Burroughs AK. Liver cirrhosis. Lancet. 2014;383(9930):1749–61 Available from: http://www.sciencedirect.com/science/article/pii/S0140673614601215.
Article
Google Scholar
Mokdad AA, Lopez AD, Shahraz S, Lozano R, Mokdad AH, Stanaway J, et al. Liver cirrhosis mortality in 187 countries between 1980 and 2010: a systematic analysis. BMC Med. 2014;12(1):145. doi: https://doi.org/10.1186/s12916-014-0145-y.
Menzin J, White LA, Nichols C, Deniz B. The economic burden of advanced liver disease among patients with hepatitis C virus: a large state Medicaid perspective. BMC Health Serv Res. 2012;12(1):459. https://doi.org/10.1186/1472-6963-12-459.
Article
Google Scholar
Schuppan D, Afdhal NH. Liver cirrhosis. Lancet. 2008;371(9615):838–51 Available from: http://www.sciencedirect.com/science/article/pii/S0140673608603839.
Article
CAS
Google Scholar
Wanless IR, Nakashima E, Sherman M. Regression of human cirrhosis: morphologic features and the genesis of incomplete septal cirrhosis. Arch Pathol Lab Med. 2000;124(11):1599–607. https://doi.org/10.1043/0003-9985(2000)124%3C1599:ROHC%3E2.0.CO;2.
Article
CAS
Google Scholar
Rodríguez-Aguilera JR, de Vaca RP-C, Guerrero-Celis N, Velasco-Loyden G, Domínguez-López M, Recillas-Targa F, et al. Molecular and cellular aspects of cirrhosis and how an adenosine derivative could revert fibrosis. In: Liver Cirrhosis-Debates and Current Challenges. London: IntechOpen; 2019.
Cholongitas E, Papatheodoridis GV, Vangeli M, Terreni N, Patch D, Burroughs AK. Systematic review: the model for end-stage liver disease–should it replace child-Pugh’s classification for assessing prognosis in cirrhosis? Aliment Pharmacol Ther. 2005;22(11–12):1079–89.
Article
CAS
Google Scholar
Schaffner F, Popper H. Capillarization of hepatic sinusoids in man. Gastroenterology. 1963;44(3):239–42.
Article
CAS
Google Scholar
Palakkan AA, Hay DC, PR AK, TV K, Ross JA. Liver tissue engineering and cell sources: issues and challenges. Liver Int. 2013;33(5):666–76 Available from: https://onlinelibrary.wiley.com/doi/abs/10.1111/liv.12134.
Article
CAS
Google Scholar
Collin de l’Hortet A, Takeishi K, Guzman-Lepe J, Handa K, Matsubara K, Fukumitsu K, et al. Liver-Regenerative Transplantation: Regrow and Reset. Am J Transplant. 2016;16(6):1688–96 Available from: https://onlinelibrary.wiley.com/doi/abs/10.1111/ajt.13678.
Article
CAS
Google Scholar
Sasse D, Spornitz UM, Maly IP. Liver architecture. Enzyme. 1992;46:8.
Article
CAS
Google Scholar
Bacon BR, O’Grady JG, Di Bisceglie AM, Lake JR. Comprehensive clinical hepatology. Amsterdam: Elsevier Ltd; 2006.
Schiff ER, Maddrey WC, Sorrell MF. Schiff’s Diseases of the Liver. New Jersey: Wiley; 2011.
Saxena R, Theise ND, Crawford JM. Microanatomy of the human liver—exploring the hidden interfaces. Hepatology. 1999;30(6):1339–46.
Article
CAS
Google Scholar
Racanelli V, Rehermann B. The liver as an immunological organ. Hepatology. 2006;43(S1):S54–62.
Article
CAS
Google Scholar
Jenne CN, Kubes P. Immune surveillance by the liver. Nat Immunol. 2013;14(10):996–1006.
Article
CAS
Google Scholar
Zhang R-R, Zheng Y-W, Li B, Nie Y-Z, Ueno Y, Tsuchida T, et al. Hepatic stem cells with self-renewal and liver repopulation potential are harbored in CDCP1-positive subpopulations of human fetal liver cells. Stem Cell Res Ther. 2018;9(1):29. https://doi.org/10.1186/s13287-017-0747-3.
Article
CAS
Google Scholar
Gao B, Jeong W, Tian Z. Liver: an organ with predominant innate immunity. Hepatology. 2008;47(2):729–36.
Article
CAS
Google Scholar
Bilzer M, Roggel F, Gerbes AL. Role of Kupffer cells in host defense and liver disease. Liver Int. 2006;26(10):1175–86.
Article
CAS
Google Scholar
Bale SS, Geerts S, Jindal R, Yarmush ML. Isolation and co-culture of rat parenchymal and non-parenchymal liver cells to evaluate cellular interactions and response. Sci Rep. 2016;6(1):25329. https://doi.org/10.1038/srep25329.
Article
CAS
Google Scholar
DeLeve LD. Liver sinusoidal endothelial cells and liver regeneration. J Clin Invest. 2013;123(5):1861–6. https://doi.org/10.1172/JCI66025.
Article
CAS
Google Scholar
Monga SPS, Pediaditakis P, Mule K, Stolz DB, Michalopoulos GK. Changes in WNT/β-catenin pathway during regulated growth in rat liver regeneration. Hepatology. 2001;33(5):1098–109.
Article
CAS
Google Scholar
Ochoa B, Syn W, Delgado I, Karaca GF, Jung Y, Wang J, et al. Hedgehog signaling is critical for normal liver regeneration after partial hepatectomy in mice. Hepatology. 2010;51(5):1712–23.
Article
CAS
Google Scholar
Huang J. Biology and engineering of stem cell niches. Boston: Academic Press; 2017.
Google Scholar
Nagy P, Bisgaard HC, Thorgeirsson SS. Expression of hepatic transcription factors during liver development and oval cell differentiation. J Cell Biol. 1994;126(1):223–33.
Article
CAS
Google Scholar
Evarts RP, Nagy P, Nakatsukasa H, Marsden E, Thorgeirsson SS. In vivo differentiation of rat liver oval cells into hepatocytes. Cancer Res. 1989;49(6):1541–7.
CAS
Google Scholar
Fausto N, Campbell JS, Riehle KJ. Liver regeneration. Hepatology. 2006;43(S1):S45–53 Available from: https://aasldpubs.onlinelibrary.wiley.com/doi/abs/10.1002/hep.20969.
Article
CAS
Google Scholar
Mallet V Serpaggi J, Verkarre V, Vallet-Pichard A, Fontaine H, Pol S. GH. Brief communication: the relationship of regression of cirrhosis to outcome in chronic hepatitis C. Ann Intern Med. 2008;149(6):399–403.
Böhm F, Köhler UA, Speicher T, Werner S. Regulation of liver regeneration by growth factors and cytokines. EMBO Mol Med. 2010;2:294–305.
Article
CAS
Google Scholar
Yang L, Bataller R, Dulyx J, Coffman TM, Ginès P, Rippe RA, et al. Attenuated hepatic inflammation and fibrosis in angiotensin type 1a receptor deficient mice. J Hepatol. 2005;43(2):317–23 Available from: http://www.sciencedirect.com/science/article/pii/S0168827805002710.
Article
CAS
Google Scholar
Takayashiki T, Yoshidome H, Kimura F, Ohtsuka M, Shimizu Y, Kato A, et al. Increased expression of toll-like receptor 4 enhances endotoxin-induced hepatic failure in partially hepatectomized mice. J Hepatol. 2004;41(4):621–8 Available from: http://www.sciencedirect.com/science/article/pii/S0168827804003022.
Article
CAS
Google Scholar
Seki E, Park E, Fujimoto J. Toll-like receptor signaling in liver regeneration, fibrosis and carcinogenesis. Hepatol Res. 2011;41(7):597–610 Available from: https://onlinelibrary.wiley.com/doi/abs/10.1111/j.1872-034X.2011.00822.x.
Article
CAS
Google Scholar
Knight B, Yeoh GC. TNF/LTα double knockout mice display abnormal inflammatory and regenerative responses to acute and chronic liver injury. Cell Tissue Res. 2005;319(1):61–70. https://doi.org/10.1007/s00441-004-1003-6.
Article
CAS
Google Scholar
Cressman DE, Greenbaum LE, DeAngelis RA, Ciliberto G, Furth EE, Poli V, et al. Liver Failure and Defective Hepatocyte Regeneration in Interleukin-6-Deficient Mice. Science (80- ). 1996;274(5291):1379–83 Available from: https://science.sciencemag.org/content/sci/274/5291/1379.full.pdf.
Article
CAS
Google Scholar
Ren X, Hogaboam C, Carpenter A, Colletti L. Stem cell factor restores hepatocyte proliferation in IL-6 knockout mice following 70% hepatectomy. J Clin Invest. 2003;112(9):1407–18. https://doi.org/10.1172/JCI17391.
Article
CAS
Google Scholar
Steiling H, Wüstefeld T, Bugnon P, Brauchle M, Fässler R, Teupser D, et al. Fibroblast growth factor receptor signalling is crucial for liver homeostasis and regeneration. Oncogene. 2003;22(28):4380–8. https://doi.org/10.1038/sj.onc.1206499.
Article
CAS
Google Scholar
Lohela M, Bry M, Tammela T, Alitalo K. VEGFs and receptors involved in angiogenesis versus lymphangiogenesis. Curr Opin Cell Biol. 2009;21(2):154–65 Available from: http://www.sciencedirect.com/science/article/pii/S0955067409000131.
Article
CAS
Google Scholar
Huh C-G, Factor VM, Sánchez A, Uchida K, Conner EA, Thorgeirsson SS. Hepatocyte growth factor/<em>c-met</em> signaling pathway is required for efficient liver regeneration and repair. Proc Natl Acad Sci U S A. 2004;101(13):4477–82 Available from: https://www.pnas.org/content/pnas/101/13/4477.full.pdf.
Article
CAS
Google Scholar
Marti U. Handling of epidermal growth factor and number of epidermal growth factor receptors are changed in aged male rats. Hepatology. 1993;18(6):1432–6 Available from: https://aasldpubs.onlinelibrary.wiley.com/doi/abs/10.1002/hep.1840180623.
Article
CAS
Google Scholar
Liu M, Chen P. Proliferation-inhibiting pathways in liver regeneration. Mol Med Rep. 2017;16(1):23–35.
Article
CAS
Google Scholar
Braun L, Mead JE, Panzica M, Mikumo R, Bell GI, Fausto N. Transforming growth factor beta mRNA increases during liver regeneration: a possible paracrine mechanism of growth regulation. Proc Natl Acad Sci. 1988;85(5):1539–43.
Article
CAS
Google Scholar
Saleh H, El-Shorbagy HM. Chitosan protects liver against ischemia-reperfusion injury via regulating Bcl-2/Bax, TNF-α and TGF-β expression. Int J Biol Macromol. 2020;164:1565–74.
Article
CAS
Google Scholar
Gressner OA, Lahme B, Siluschek M, Rehbein K, Herrmann J, Weiskirchen R, et al. Activation of TGF-β within cultured hepatocytes and in liver injury leads to intracrine signaling with expression of connective tissue growth factor. J Cell Mol Med. 2008;12(6b):2717–30 Available from: https://onlinelibrary.wiley.com/doi/abs/10.1111/j.1582-4934.2008.00260.x.
Article
CAS
Google Scholar
Karkampouna S, Goumans M-J, Ten Dijke P, Dooley S, Kruithof-de JM. Inhibition of TGFβ type I receptor activity facilitates liver regeneration upon acute CCl 4 intoxication in mice. Arch Toxicol. 2016;90(2):347–57.
Article
CAS
Google Scholar
Russell WE, Coffey RJ, Ouellette AJ, Moses HL. Type beta transforming growth factor reversibly inhibits the early proliferative response to partial hepatectomy in the rat. Proc Natl Acad Sci. 1988;85(14):5126–30.
Article
CAS
Google Scholar
Liska V, Treska V, Mirka H, Kobr J, Sykora R, Skalicky T, et al. Inhibition of transforming growth factor beta-1 augments liver regeneration after partial portal vein ligation in a porcine experimental model. Hepatogastroenterology. 2012;59(113):235–40.
CAS
Google Scholar
Bizzaro D, Burra P. RFP. New Perspectives in Liver Transplantation: From Regeneration to Bioengineering. Bioengineering. 2019;6(3):81.
Article
CAS
Google Scholar
da Silva MA, Vieira S, Zhao X, Mao Z, Gao C, Oliveira JM, et al. Advanced Biomaterials and Processing Methods for Liver Regeneration: State-of-the-Art and Future Trends. Adv Healthc Mater. 2020;9(5):1901435 Available from: https://onlinelibrary.wiley.com/doi/abs/10.1002/adhm.201901435.
Article
CAS
Google Scholar
Zhang J, Zhao X, Liang L, Li J, Demirci U, Wang S. A decade of progress in liver regenerative medicine. Biomaterials. 2018;157:161–76 Available from: http://www.sciencedirect.com/science/article/pii/S0142961217307536.
Article
CAS
Google Scholar
Godoy P, Hengstler JG, Ilkavets I, Meyer C, Bachmann A, Müller A, et al. Extracellular matrix modulates sensitivity of hepatocytes to fibroblastoid dedifferentiation and transforming growth factor β–induced apoptosis. Hepatology. 2009;49(6):2031–43 Available from: https://aasldpubs.onlinelibrary.wiley.com/doi/abs/10.1002/hep.22880.
Article
CAS
Google Scholar
Huch M, Dorrell C, Boj SF, van Es JH, Li VSW, van de Wetering M, et al. In vitro expansion of single Lgr5+ liver stem cells induced by Wnt-driven regeneration. Nature. 2013;494(7436):247–50. https://doi.org/10.1038/nature11826.
Article
CAS
Google Scholar
Huch M, Gehart H, van Boxtel R, Hamer K, Blokzijl F, Verstegen MMA, et al. Long-term culture of genome-stable Bipotent stem cells from adult human liver. Cell. 2015;160(1):299–312 Available from: http://www.sciencedirect.com/science/article/pii/S0092867414015669.
Article
CAS
Google Scholar
Sadri A-R, Jeschke MG, Amini-Nik S. Advances in liver regeneration: revisiting hepatic stem/progenitor cells and their origin. Stem Cells Int. 2016;2016:7920897. https://doi.org/10.1155/2016/7920897 Jendelova P, editor.
Article
CAS
Google Scholar
Park MR, Wong MS, Araúzo-Bravo MJ, Lee H, Nam D, Park SY, et al. Oct4 and Hnf4α-induced hepatic stem cells ameliorate chronic liver injury in liver fibrosis model. PLoS One. 2019;14(8):e0221085. https://doi.org/10.1371/journal.pone.0221085.
Article
CAS
Google Scholar
Ober EA, Lemaigre FP. Development of the liver: insights into organ and tissue morphogenesis. J Hepatol. 2018;68(5):1049–62 Available from: http://www.sciencedirect.com/science/article/pii/S0168827818300151.
Article
CAS
Google Scholar
Sauer V, Roy-Chowdhury N, Guha C, Roy-Chowdhury J. Induced pluripotent stem cells as a source of hepatocytes. Curr Pathobiol Rep. 2014;2(1):11–20.
Article
Google Scholar
Shi D, Zhang J, Zhou Q, Xin J, Jiang J, Jiang L, et al. Quantitative evaluation of human bone mesenchymal stem cells rescuing fulminant hepatic failure in pigs. Gut. 2017;66(5):955–64 Available from: https://gut.bmj.com/content/gutjnl/66/5/955.full.pdf.
Article
CAS
Google Scholar
Du C, Narayanan K, Leong MF, Wan ACA. Induced pluripotent stem cell-derived hepatocytes and endothelial cells in multi-component hydrogel fibers for liver tissue engineering. Biomaterials. 2014;35(23):6006–14 Available from: http://www.sciencedirect.com/science/article/pii/S0142961214003858.
Article
CAS
Google Scholar
Zhang S, Tong W, Zheng B, Susanto TAK, Xia L, Zhang C, et al. A robust high-throughput sandwich cell-based drug screening platform. Biomaterials. 2011;32(4):1229–41 Available from: http://www.sciencedirect.com/science/article/pii/S0142961210012615.
Article
CAS
Google Scholar
Chen C, Soto-Gutierrez A, Baptista PM, Spee B. Biotechnology challenges to in vitro maturation of hepatic stem cells. Gastroenterology. 2018;154(5):1258–72 Available from: http://www.sciencedirect.com/science/article/pii/S0016508518301665.
Article
Google Scholar
Ji R, Zhang N, You N, Li Q, Liu W, Jiang N, et al. The differentiation of MSCs into functional hepatocyte-like cells in a liver biomatrix scaffold and their transplantation into liver-fibrotic mice. Biomaterials. 2012;33(35):8995–9008 Available from: http://www.sciencedirect.com/science/article/pii/S0142961212009611.
Article
CAS
Google Scholar
Sang W, Lv B, Li K, Lu Y. Therapeutic efficacy and safety of umbilical cord mesenchymal stem cell transplantation for liver cirrhosis in Chinese population: a meta-analysis. Clin Res Hepatol Gastroenterol. 2018;42(3):193–204 Available from: http://www.sciencedirect.com/science/article/pii/S2210740117302590.
Article
Google Scholar
Hannoun Z, Steichen C, Dianat N, Weber A, Dubart-Kupperschmitt A. The potential of induced pluripotent stem cell derived hepatocytes. J Hepatol. 2016;65(1):182–99 Available from: http://www.sciencedirect.com/science/article/pii/S0168827816001586.
Article
CAS
Google Scholar
Rashid ST, Corbineau S, Hannan N, Marciniak SJ, Miranda E, Alexander G, et al. Modeling inherited metabolic disorders of the liver using human induced pluripotent stem cells. J Clin Invest. 2010;120(9):3127–36. https://doi.org/10.1172/JCI43122.
Article
CAS
Google Scholar
Huang P, Zhang L, Gao Y, He Z, Yao D, Wu Z, et al. Direct reprogramming of human fibroblasts to functional and expandable hepatocytes. Cell Stem Cell. 2014;14(3):370–84 Available from: http://www.sciencedirect.com/science/article/pii/S1934590914000046.
Article
CAS
Google Scholar
Liu M, Yang J, Hu W, Zhang S, Wang Y. Superior performance of co-cultured mesenchymal stem cells and hepatocytes in poly (lactic acid-glycolic acid) scaffolds for the treatment of acute liver failure. Biomed Mater. 2016;11(1):15008.
Article
CAS
Google Scholar
Hay DC, Zhao D, Fletcher J, Hewitt ZA, McLean D, Urruticoechea-Uriguen A, et al. Efficient differentiation of hepatocytes from human embryonic stem cells exhibiting markers recapitulating liver development in vivo. Stem Cells. 2008;26(4):894–902 Available from: https://stemcellsjournals.onlinelibrary.wiley.com/doi/abs/10.1634/stemcells.2007-0718.
Article
CAS
Google Scholar
Gao X, Liu Y. A transcriptomic study suggesting human iPSC-derived hepatocytes potentially offer a better in vitro model of hepatotoxicity than most hepatoma cell lines. Cell Bol Toxicol. 2017;33(4):407–21. https://doi.org/10.1007/s10565-017-9383-z.
Article
CAS
Google Scholar
Raab S, Klingenstein M, Liebau S, Linta L. A comparative view on human somatic cell sources for iPSC generation. Stem Cells Int. 2014;2014:768391. https://doi.org/10.1155/2014/768391 Lyons GE, editor.
Article
Google Scholar
Yamaguchi T, Matsuzaki J, Katsuda T, Saito Y, Saito H, Ochiya T. Generation of functional human hepatocytes in vitro: current status and future prospects. Inflamm Regen. 2019;39(1):13. https://doi.org/10.1186/s41232-019-0102-4.
Article
CAS
Google Scholar
Yasuda K, Kotaka M, Toyohara T, Sueta S-I, Katakai Y, Ageyama N, et al. A nonhuman primate model of liver fibrosis towards cell therapy for liver cirrhosis. Biochem Biophys Res Commun. 2020;526(3):661–9 Available from: http://www.sciencedirect.com/science/article/pii/S0006291X20306434.
Article
CAS
Google Scholar
Shang Y, Tamai M, Ishii R, Nagaoka N, Yoshida Y, Ogasawara M, et al. Hybrid sponge comprised of galactosylated chitosan and hyaluronic acid mediates the co-culture of hepatocytes and endothelial cells. J Biosci Bioeng. 2014;117(1):99–106 Available from: http://www.sciencedirect.com/science/article/pii/S1389172313002545.
Article
CAS
Google Scholar
Ma X, Qu X, Zhu W, Li Y-S, Yuan S, Zhang H, et al. Deterministically patterned biomimetic human iPSC-derived hepatic model via rapid 3D bioprinting. Proc Natl Acad Sci. 2016;113(8):2206–11 Available from: https://www.pnas.org/content/pnas/113/8/2206.full.pdf.
Article
CAS
Google Scholar
Nevi L, Safarikia S, Di Matteo S, Biancaniello F, Chiappetta MF, Cardinale V. Hyaluronan-based grafting strategies for liver stem cell therapy and tracking methods. Stem Cells Int. 2019;2019:3620546. https://doi.org/10.1155/2019/3620546 Li M, editor.
Article
CAS
Google Scholar
Jain E, Damania A, Kumar A. Biomaterials for liver tissue engineering. Hepatol Int. 2014;8(2):185–97. https://doi.org/10.1007/s12072-013-9503-7.
Article
Google Scholar
Dvir-Ginzberg M, Gamlieli-Bonshtein I, Agbaria R, Cohen S. Liver tissue engineering within alginate scaffolds: effects of cell-seeding density on hepatocyte viability, morphology, and function. Tissue Eng. 2003;9(4):757–66.
Article
CAS
Google Scholar
Dvir-Ginzberg M, Elkayam T, Cohen S. Induced differentiation and maturation of newborn liver cells into functional hepatic tissue in macroporous alginate scaffolds. FASEB J. 2008;22(5):1440–9.
Article
CAS
Google Scholar
Lin N, Lin J, Bo L, Weidong P, Chen S, Xu R. Differentiation of bone marrow-derived mesenchymal stem cells into hepatocyte-like cells in an alginate scaffold. Cell Prolif. 2010;43(5):427–34.
Article
CAS
Google Scholar
Glicklis R, Shapiro L, Agbaria R, Merchuk JC, Cohen S. Hepatocyte behavior within three-dimensional porous alginate scaffolds. Biotechnol Bioeng. 2000;67(3):344–53.
Article
CAS
Google Scholar
Jeon H, Kang K, Park SA, Kim WD, Paik SS, Lee S-H, et al. Generation of multilayered 3D structures of HepG2 cells using a bio-printing technique. Gut Liver. 2017;11(1):121.
Article
Google Scholar
Kang K, Kim Y, Jeon H, Lee SB, Kim JS, Park SA, et al. Three-dimensional bioprinting of hepatic structures with directly converted hepatocyte-like cells. Tissue Eng Part A. 2018;24(7–8):576–83.
Article
CAS
Google Scholar
Katsuda T, Teratani T, Ochiya T, Sakai Y. Transplantation of a fetal liver cell-loaded hyaluronic acid sponge onto the mesentery recovers a Wilson’s disease model rat. J Biochem. 2010;148(3):281–8. https://doi.org/10.1093/jb/mvq063.
Article
CAS
Google Scholar
Zavan B, Brun P, Vindigni V, Amadori A, Habeler W, Pontisso P, et al. Extracellular matrix-enriched polymeric scaffolds as a substrate for hepatocyte cultures: in vitro and in vivo studies. Biomaterials. 2005;26(34):7038–45.
Article
CAS
Google Scholar
Li J, Pan J, Zhang L, Yu Y. Culture of hepatocytes on fructose-modified chitosan scaffolds. Biomaterials. 2003;24(13):2317–22.
Article
CAS
Google Scholar
Feng Z-Q, Chu X, Huang N-P, Wang T, Wang Y, Shi X, et al. The effect of nanofibrous galactosylated chitosan scaffolds on the formation of rat primary hepatocyte aggregates and the maintenance of liver function. Biomaterials. 2009;30(14):2753–63 Available from: http://www.sciencedirect.com/science/article/pii/S0142961209001124.
Article
CAS
Google Scholar
Demetriou AA, Whiting JF, Feldman D, Levenson SM, Chowdhury NR, Moscioni AD, et al. Replacement of liver function in rats by transplantation of microcarrier-attached hepatocytes. Science (80- ). 1986;233(4769):1190–2.
Article
CAS
Google Scholar
De Bartolo L, Jarosch-Von Schweder G, Haverich A, Bader A. A novel full-scale flat membrane bioreactor utilizing porcine hepatocytes: cell viability and tissue-specific functions. Biotechnol Prog. 2000;16(1):102–8.
Article
CAS
Google Scholar
Lewis PL, Green RM, Shah RN. 3D-printed gelatin scaffolds of differing pore geometry modulate hepatocyte function and gene expression. Acta Biomater. 2018;69:63–70 Available from: http://www.sciencedirect.com/science/article/pii/S1742706118300011.
Article
CAS
Google Scholar
Wang X, Yan Y, Pan Y, Xiong Z, Liu H, Cheng J, et al. Generation of three-dimensional hepatocyte/gelatin structures with rapid prototyping system. Tissue Eng. 2006;12(1):83–90.
Article
CAS
Google Scholar
German CL, Madihally SV. Type of endothelial cells affects HepaRG cell acetaminophen metabolism in both 2D and 3D porous scaffold cultures. J Appl Toxicol. 2019;39(3):461–72 Available from: https://onlinelibrary.wiley.com/doi/abs/10.1002/jat.3737.
Article
CAS
Google Scholar
Seo S-J, Kim I-Y, Choi Y-J, Akaike T, Cho C-S. Enhanced liver functions of hepatocytes cocultured with NIH 3T3 in the alginate/galactosylated chitosan scaffold. Biomaterials. 2006;27(8):1487–95.
Article
CAS
Google Scholar
Nugraha B, Hong X, Mo X, Tan L, Zhang W, Chan P-M, et al. Galactosylated cellulosic sponge for multi-well drug safety testing. Biomaterials. 2011;32(29):6982–94.
Article
CAS
Google Scholar
Wang B, Jakus AE, Baptista PM, Soker S, Soto-Gutierrez A, Abecassis MM, et al. Functional maturation of induced pluripotent stem cell hepatocytes in extracellular matrix—a comparative analysis of bioartificial liver microenvironments. Stem Cells Transl Med. 2016;5(9):1257–67.
Article
CAS
Google Scholar
Hwang Y, Goh M, Kim M, Tae G. Injectable and detachable heparin-based hydrogel micropatches for hepatic differentiation of hADSCs and their liver targeted delivery. Biomaterials. 2018;165:94–104 Available from: http://www.sciencedirect.com/science/article/pii/S0142961218301601.
Article
CAS
Google Scholar
Hwang Y, Kim JC, Tae G. Significantly enhanced recovery of acute liver failure by liver targeted delivery of stem cells via heparin functionalization. Biomaterials. 2019;209:67–78 Available from: http://www.sciencedirect.com/science/article/pii/S0142961219302364.
Article
CAS
Google Scholar
Lee H, Han W, Kim H, Ha D-H, Jang J, Kim BS, et al. Development of liver decellularized extracellular matrix bioink for three-dimensional cell printing-based liver tissue engineering. Biomacromolecules. 2017;18(4):1229–37.
Article
CAS
Google Scholar
Saleh T, Ahmed E, Yu L, Hussein K, Park K-M, Lee Y-S, et al. Silver nanoparticles improve structural stability and biocompatibility of decellularized porcine liver. Artif Cells Nanomed Biotechnol. 2018;46(sup2):273–84. https://doi.org/10.1080/21691401.2018.1457037.
Article
CAS
Google Scholar
Sellaro TL, Ranade A, Faulk DM, McCabe GP, Dorko K, Badylak SF, et al. Maintenance of human hepatocyte function in vitro by liver-derived extracellular matrix gels. Tissue Eng Part A. 2010;16(3):1075–82.
Article
CAS
Google Scholar
Wang Y, Cui C, Yamauchi M, Miguez P, Roach M, Malavarca R, et al. Lineage restriction of human hepatic stem cells to mature fates is made efficient by tissue-specific biomatrix scaffolds. Hepatology. 2011;53(1):293–305.
Article
CAS
Google Scholar
Török E, Vogel C, Lütgehetmann M, Ma PX, Dandri M, Petersen J, et al. Morphological and functional analysis of rat hepatocyte spheroids generated on poly(L-lactic acid) polymer in a pulsatile flow bioreactor. Tissue Eng. 2006;12(7):1881–90.
Article
Google Scholar
Takei T, Ijima H, Sakai S, Ono T, Kawakami K. Enhanced angiogenesis in bFGF-containing scaffold promoted viability of enclosed hepatocytes and maintained Hepatospecific glycogen storage capacity. J Chem Eng. 2005;38(11):913–7 Japan.
Article
CAS
Google Scholar
Jiang J, Kojima N, Kinoshita T, Miyajima A, Yan W, Sakai Y. Cultivation of fetal liver cells in a three-dimensional poly-L-lactic acid scaffold in the presence of Oncostatin M. Cell Transplant. 2002;11(5):403–6 Available from: https://journals.sagepub.com/doi/abs/10.3727/000000002783985648.
Article
Google Scholar
Grant R, Hay DC, Callanan A. A Drug-Induced Hybrid Electrospun Poly-Capro-Lactone: Cell-Derived Extracellular Matrix Scaffold for Liver Tissue Engineering. Tissue Eng Part A. 2017;23(13–14):650–62.
Article
CAS
Google Scholar
Lee JW, Choi Y-J, Yong W-J, Pati F, Shim J-H, Kang KS, et al. Development of a 3D cell printed construct considering angiogenesis for liver tissue engineering. Biofabrication. 2016;8(1):15007.
Article
CAS
Google Scholar
Shim J-H, Kim JY, Park M, Park J, Cho D-W. Development of a hybrid scaffold with synthetic biomaterials and hydrogel using solid freeform fabrication technology. Biofabrication. 2011;3(3):34102. https://doi.org/10.1088/1758-5082/3/3/034102.
Article
CAS
Google Scholar
Tsang VL, Chen AA, Cho LM, Jadin KD, Sah RL, DeLong S, et al. Fabrication of 3D hepatic tissues by additive photopatterning of cellular hydrogels. FASEB J. 2007;21(3):790–801.
Article
CAS
Google Scholar
van Zijl F, Mikulits W. Hepatospheres: three dimensional cell cultures resemble physiological conditions of the liver. World J Hepatol. 2010;2(1):1–7 Available from: https://pubmed.ncbi.nlm.nih.gov/21160950.
Article
Google Scholar
Tripathi A, Tripathi A, Melo JS. Preparation of a sponge-like biocomposite agarose–chitosan scaffold with primary hepatocytes for establishing an in vitro 3D liver tissue model. RSC Adv. 2015;5(39):30701.
Article
CAS
Google Scholar
Lou R, Yu W, Song Y, Ren Y, Zheng H, Guo X, et al. Fabrication of stable galactosylated alginate microcapsules via covalent coupling onto hydroxyl groups for hepatocytes applications. Carbohydr Polym. 2017;155:456–65 Available from: http://www.sciencedirect.com/science/article/pii/S0144861716310505.
Article
CAS
Google Scholar
Gao C, Yang Y, Zhang Y, Qian M, Yang J. HGF gene delivering alginate/Galactosylated chitosan sponge scaffold for three-dimensional Coculture of hepatocytes/3T3 cells. DNA Cell Biol. 2020;39(3):451–8 Available from: http://europepmc.org/abstract/MED/31910350.
Article
CAS
Google Scholar
Ranucci CS, Kumar A, Batra SP, Moghe PV. Control of hepatocyte function on collagen foams: sizing matrix pores toward selective induction of 2-D and 3-D cellular morphogenesis. Biomaterials. 2000;21(8):783–93 Available from: http://www.sciencedirect.com/science/article/pii/S0142961299002380.
Article
CAS
Google Scholar
Kant RJ, Coulombe KLK. Integrated approaches to spatiotemporally directing angiogenesis in host and engineered tissues. Acta Biomater. 2018;69:42–62 Available from: http://www.sciencedirect.com/science/article/pii/S174270611830028X.
Article
CAS
Google Scholar
Kasuya J, Sudo R, Mitaka T, Ikeda M, Tanishita K. Hepatic stellate cell-mediated three-dimensional hepatocyte and endothelial cell triculture model. Tissue Eng Part A. 2011;17(3–4):361–70.
Article
Google Scholar
Kourouklis AP, Kaylan KB, Underhill GH. Substrate stiffness and matrix composition coordinately control the differentiation of liver progenitor cells. Biomaterials. 2016;99:82–94.
Article
CAS
Google Scholar
Zaman MH, Trapani LM, Sieminski AL, Mackellar D, Gong H, Kamm RD, et al. Migration of tumor cells in 3D matrices is governed by matrix stiffness along with cell-matrix adhesion and proteolysis. Proc Natl Acad Sci U S A. 2006;103(29):10889–94.
Article
CAS
Google Scholar
Takeda T, Yasuda T, Nakayama Y, Nakaya M, Kimura M, Yamashita M, et al. Usefulness of noninvasive transient elastography for assessment of liver fibrosis stage in chronic hepatitis C. World J Gastroenterol. 2006;12(48):7768–73.
Article
CAS
Google Scholar
Mazza G, Al-Akkad W, Rombouts K, Pinzani M. Liver tissue engineering: from implantable tissue to whole organ engineering. Hepatol Commun. 2017;2(2):131–41 Available from: https://pubmed.ncbi.nlm.nih.gov/29404520.
Article
Google Scholar
Natarajan V, Berglund EJ, Chen DX, Kidambi S. Substrate stiffness regulates primary hepatocyte functions. RSC Adv. 2015;5(99):80956–66.
Article
CAS
Google Scholar
Semler EJ, Lancin PA, Dasgupta A, Moghe PV. Engineering hepatocellular morphogenesis and function via ligand-presenting hydrogels with graded mechanical compliance. Biotechnol Bioeng. 2005;89(3):296–307.
Article
CAS
Google Scholar
Deegan DB, Zimmerman C, Skardal A, Atala A, Shupe TD. Stiffness of hyaluronic acid gels containing liver extracellular matrix supports human hepatocyte function and alters cell morphology. J Mech Behav Biomed Mater. 2015;55:87–103.
Article
CAS
Google Scholar
Caliari SR, Perepelyuk M, Cosgrove BD, Tsai SJ, Lee GY, Mauck RL, et al. Stiffening hydrogels for investigating the dynamics of hepatic stellate cell mechanotransduction during myofibroblast activation. Sci Rep. 2016;6(1):21387. https://doi.org/10.1038/srep21387.
Article
CAS
Google Scholar
Cheng T-Y, Wu H-C, Huang M-Y, Chang W-H, Lee C-H, Wang T-W. Self-assembling functionalized nanopeptides for immediate hemostasis and accelerative liver tissue regeneration. Nanoscale. 2013;5(7):2734–44. https://doi.org/10.1039/C3NR33710C.
Article
CAS
Google Scholar
Hosseini V, Maroufi NF, Saghati S, Asadi N, Darabi M, Ahmad SNS, et al. Current progress in hepatic tissue regeneration by tissue engineering. J Transl Med. 2019;17(1):383. https://doi.org/10.1186/s12967-019-02137-6.
Article
Google Scholar
Kim MH, Kumar SK, Shirahama H, Seo J, Lee JH, Cho N-J. Phenotypic regulation of liver cells in a biofunctionalized three-dimensional hydrogel platform. Integr Biol. 2016;8(2):156–66. https://doi.org/10.1039/c5ib00269a.
Article
Google Scholar
Liu Y, Li H, Yan S, Wei J, Li X. Hepatocyte cocultures with endothelial cells and fibroblasts on micropatterned fibrous mats to promote liver-specific functions and capillary formation capabilities. Biomacromolecules. 2014;15(3):1044–54.
Article
CAS
Google Scholar
Wang Y, Lee J-H, Shirahama H, Seo J, Glenn JS, Cho N-J. Extracellular matrix functionalization and Huh-7.5 cell Coculture promote the hepatic differentiation of human adipose-derived mesenchymal stem cells in a 3D ICC hydrogel scaffold. ACS Biomater Sci Eng. 2016;2(12):2255–65. https://doi.org/10.1021/acsbiomaterials.6b00487.
Article
CAS
Google Scholar
Zeigerer A, Wuttke A, Marsico G, Seifert S, Kalaidzidis Y, Zerial M. Functional properties of hepatocytes in vitro are correlated with cell polarity maintenance. Exp Cell Res. 2017;350(1):242–52 Available from: http://www.sciencedirect.com/science/article/pii/S0014482716304001.
Article
CAS
Google Scholar
Dunn JCY, Yarmush ML, Koebe HG, Tompkins RG. Hepatocyte function and extracellular matrix geometry: long-term culture in a sandwich configuration. FASEB J. 1989;3(2):174–7 Available from: https://faseb.onlinelibrary.wiley.com/doi/abs/10.1096/fasebj.3.2.2914628.
Article
CAS
Google Scholar
Perez RA, Jung C-R, Kim H-W. Biomaterials and Culture Technologies for Regenerative Therapy of Liver Tissue. Adv Healthc Mater. 2017;6(2):1600791 Available from: https://onlinelibrary.wiley.com/doi/abs/10.1002/adhm.201600791.
Article
CAS
Google Scholar
Gao F, Yang CX, Mo W, Liu YW, He YQ. Hyaluronan oligosaccharides are potential stimulators to angiogenesis via RHAMM mediated signal pathway in wound healing. Clin Invest Med. 2008;31(3):E106–16.
Article
CAS
Google Scholar
Collins MN, Birkinshaw C. Hyaluronic acid based scaffolds for tissue engineering—a review. Carbohydr Polym. 2013;92(2):1262–79 Available from: http://www.sciencedirect.com/science/article/pii/S0144861712010478.
Article
CAS
Google Scholar
Turner RA, Wauthier E, Lozoya O, McClelland R, Bowsher JE, Barbier C, et al. Successful transplantation of human hepatic stem cells with restricted localization to liver using hyaluronan grafts†. Hepatology. 2013;57(2):775–84 Available from: https://aasldpubs.onlinelibrary.wiley.com/doi/abs/10.1002/hep.26065.
Article
CAS
Google Scholar
Carraro A, Buggio M, Gardin C, Tedeschi U, Ferroni L, Zavan P-B. Mesenchymal Stem Cells Increase Neo-Angiogenesis and Albumin Production in a Liver Tissue-Engineered Engraftment. Int J Mol Sci. 2016;17(3):374 Available from: https://pubmed.ncbi.nlm.nih.gov/26985891.
Article
CAS
Google Scholar
Yang YM, Noureddin M, Liu C, Ohashi K, Kim SY, Ramnath D, et al. Hyaluronan synthase 2–mediated hyaluronan production mediates Notch1 activation and liver fibrosis. Sci Transl Med. 2019;11(496):eaat9284 Available from: https://stm.sciencemag.org/content/scitransmed/11/496/eaat9284.full.pdf.
Article
CAS
Google Scholar
Croisier F, Jérôme C. Chitosan-based biomaterials for tissue engineering. Eur Polym J. 2013;49(4):780–92 Available from: http://www.sciencedirect.com/science/article/pii/S0014305712004181.
Article
CAS
Google Scholar
Vårum KM, Myhr MM, Hjerde RJN, Smidsrød O. In vitro degradation rates of partially N-acetylated chitosans in human serum. Carbohydr Res. 1997;299(1):99–101 Available from: http://www.sciencedirect.com/science/article/pii/S0008621596003321.
Article
Google Scholar
Mao JS, Zhao LG, Yin YJ, De Yao K. Structure and properties of bilayer chitosan–gelatin scaffolds. Biomaterials. 2003;24(6):1067–74 Available from: http://www.sciencedirect.com/science/article/pii/S0142961202004428.
Article
CAS
Google Scholar
Huang Y, Onyeri S, Siewe M, Moshfeghian A, Madihally SV. In vitro characterization of chitosan–gelatin scaffolds for tissue engineering. Biomaterials. 2005;26(36):7616–27 Available from: http://www.sciencedirect.com/science/article/pii/S0142961205004175.
Article
CAS
Google Scholar
Wang B, Hu Q, Wan T, Yang F, Cui L, Hu S, et al. Porous lactose-modified chitosan scaffold for liver tissue engineering: influence of galactose moieties on cell attachment and mechanical stability. Int J Polym Sci. 2016;2016:2862738. https://doi.org/10.1155/2016/2862738 Sencadas V, editor.
Article
CAS
Google Scholar
Sakai S, Yamaguchi S, Takei T, Kawakami K. Oxidized alginate-cross-linked alginate/gelatin hydrogel fibers for fabricating tubular constructs with layered smooth muscle cells and endothelial cells in collagen gels. Biomacromolecules. 2008;9(7):2036–41. https://doi.org/10.1021/bm800286v.
Article
CAS
Google Scholar
Zhao Y, Gao S, Zhao S, Li Y, Cheng L, Li J, et al. Synthesis and characterization of disulfide-crosslinked alginate hydrogel scaffolds. Mater Sci Eng C. 2012;32(8):2153–62 Available from: http://www.sciencedirect.com/science/article/pii/S0928493112002445.
Article
CAS
Google Scholar
Tai BCU, Du C, Gao S, Wan ACA, Ying JY. The use of a polyelectrolyte fibrous scaffold to deliver differentiated hMSCs to the liver. Biomaterials. 2010;31(1):48–57 Available from: http://www.sciencedirect.com/science/article/pii/S0142961209009521.
Article
CAS
Google Scholar
Jitraruch S, Dhawan A, Hughes RD, Filippi C, Soong D, Philippeos C, et al. Alginate microencapsulated hepatocytes optimised for transplantation in acute liver failure. PLoS One. 2014;9(12):e113609. https://doi.org/10.1371/journal.pone.0113609.
Article
CAS
Google Scholar
Ito Y, Chang TMS. In vitro Study of Multicellular Hepatocyte Spheroids Formed in Microcapsules. Artif Organs. 1992;16(4):422–7. https://doi.org/10.1111/j.1525-1594.1992.tb00544.x.
Article
CAS
Google Scholar
Vasanthan KS, Subramanian A, Krishnan UM, Sethuraman S. Role of biomaterials, therapeutic molecules and cells for hepatic tissue engineering. Biotechnol Adv. 2012;30(3):742–52 Available from: http://www.sciencedirect.com/science/article/pii/S0734975012000067.
Article
CAS
Google Scholar
Lee JS, Cho S. Liver tissue engineering: recent advances in the development of a bio-artificial liver. Biotechnol Bioprocess Eng BBE. 2012;17(3):427–38 Available from: https://login.ezproxy.library.tufts.edu/login?url=https://www.proquest.com/docview/1018462487?accountid=14434.
Article
CAS
Google Scholar
Bello AB, Kim D, Kim D, Park H, Lee SH. Engineering and Functionalization of Gelatin Biomaterials: From Cell Culture to Medical Applications. Tissue Eng Part B Rev. 2020;26(2):164–80.
Article
CAS
Google Scholar
Ruoß M, Häussling V, Schügner F, Olde Damink LHH, Lee SML, Ge L, et al. A Standardized Collagen-Based Scaffold Improves Human Hepatocyte Shipment and Allows Metabolic Studies over 10 Days. Bioeng. 2018;5(4):1-19.
Kumari J, Karande AA, Kumar A. Combined effect of Cryogel matrix and temperature-reversible soluble–insoluble polymer for the development of in vitro human liver tissue. ACS Appl Mater Interfaces. 2016;8(1):264–77. https://doi.org/10.1021/acsami.5b08607.
Article
CAS
Google Scholar
Hou Y-T, Hsu C-C. Development of a 3D porous chitosan/gelatin liver scaffold for a bioartificial liver device. J Biosci Bioeng. 2020;129(6):741–8 Available from: http://www.sciencedirect.com/science/article/pii/S1389172319308771.
Article
CAS
Google Scholar
Hong SR, Lee YM, Akaike T. Evaluation of a galactose-carrying gelatin sponge for hepatocytes culture and transplantation. J Biomed Mater Res Part A. 2003;67A(3):733–41 Available from: https://onlinelibrary.wiley.com/doi/abs/10.1002/jbm.a.10138.
Article
CAS
Google Scholar
Mohammadpour A, Arjmand S, Lotfi AS, Tavana H, Kabir-Salmani M. Promoting hepatogenic differentiation of human mesenchymal stem cells using a novel laminin-containing gelatin cryogel scaffold. Biochem Biophys Res Commun. 2018;507(1–4):15–21.
Article
CAS
Google Scholar
Zhu M, Wang Y, Ferracci G, Zheng J, Cho N-J, Lee BH. Gelatin methacryloyl and its hydrogels with an exceptional degree of controllability and batch-to-batch consistency. Sci Rep. 2019;9(1):6863. https://doi.org/10.1038/s41598-019-42186-x.
Article
CAS
Google Scholar
Cui J, Wang H, Shi Q, Sun T, Huang Q, Fukuda T. Multicellular Co-Culture in Three-Dimensional Gelatin Methacryloyl Hydrogels for Liver Tissue Engineering. Molecules. 2019;24(9):1762 Available from: https://www.mdpi.com/1420-3049/24/9/1762.
Article
CAS
Google Scholar
Zhuang T, Li X, Deng Q, Zhao W, Lin B, Luo Y, et al. A GelMA/DECM/nanoclay composite biomaterial ink for printing 3D scaffolds for primary hepatocytes cultivation. Mater Lett. 2020;274:128034 Available from: http://www.sciencedirect.com/science/article/pii/S0167577X20307394.
Article
CAS
Google Scholar
Levy I, Shoseyov O. Cellulose-binding domains: biotechnological applications. Biotechnol Adv. 2002;20(3–4):191–213.
Article
CAS
Google Scholar
Domingues RM, Gomes ME, Reis RL. The potential of cellulose nanocrystals in tissue engineering strategies. Biomacromolecules. 2014;15(7):2327–46.
Article
CAS
Google Scholar
Mohite BV, Patil SV. A novel biomaterial: bacterial cellulose and its new era applications. Biotechnol Appl Biochem. 2014;61(2):101–10 Available from: https://iubmb.onlinelibrary.wiley.com/doi/abs/10.1002/bab.1148.
Article
CAS
Google Scholar
Courtenay JC, Sharma RI, Scott JL. Recent Advances in Modified Cellulose for Tissue Culture Applications. Molecules. 2018;23(3):654 Available from: https://pubmed.ncbi.nlm.nih.gov/29538287.
Article
CAS
Google Scholar
Bhattacharya M, Malinen MM, Lauren P, Lou Y-R, Kuisma SW, Kanninen L, et al. Nanofibrillar cellulose hydrogel promotes three-dimensional liver cell culture. J Control Release. 2012;164(3):291–8 Available from: http://www.sciencedirect.com/science/article/pii/S0168365912005391.
Article
CAS
Google Scholar
Krüger M, Oosterhoff LA, van Wolferen ME, Schiele SA, Walther A, Geijsen N, et al. Cellulose Nanofibril Hydrogel Promotes Hepatic Differentiation of Human Liver Organoids. Adv Healthc Mater. 2020;9(6):1901658. https://doi.org/10.1002/adhm.201901658.
Article
CAS
Google Scholar
Poorna MR, Sudhindran S, Thampi MV, Mony U. Differentiation of induced pluripotent stem cells to hepatocyte-like cells on cellulose nanofibril substrate. Colloids Surf B: Biointerfaces. 2020:111466 Available from: http://www.sciencedirect.com/science/article/pii/S0927776520308225.
Ren S, Cai C, Cui G, Ni Q, Jiang R, Su X, et al. High dosages of pectin and cellulose cause different degrees of damage to the livers and intestines of Pelteobagrus fulvidraco. Aquaculture. 2020;514:734445 Available from: http://www.sciencedirect.com/science/article/pii/S0044848619305988.
Article
CAS
Google Scholar
Singh V, Yeoh BS, Chassaing B, Xiao X, Saha P, Aguilera Olvera R, et al. Dysregulated Microbial Fermentation of Soluble Fiber Induces Cholestatic Liver Cancer. Cell. 2018;175(3):679–94 e22. Available from: http://www.sciencedirect.com/science/article/pii/S0092867418311760.
Article
CAS
Google Scholar
Jockenhoevel S, Zund G, Hoerstrup SP, Chalabi K, Sachweh JS, Demircan L, et al. Fibrin gel – advantages of a new scaffold in cardiovascular tissue engineering. Eur J Cardio Thoracic Surg. 2001;19(4):424–30. https://doi.org/10.1016/S1010-7940(01)00624-8.
Article
CAS
Google Scholar
de la Puente P, Ludeña D. Cell culture in autologous fibrin scaffolds for applications in tissue engineering. Exp Cell Res. 2014;322(1):1–11 Available from: http://www.sciencedirect.com/science/article/pii/S0014482713005454.
Article
CAS
Google Scholar
Groeneveld D, Pereyra D, Veldhuis Z, Adelmeijer J, Ottens P, Kopec AK, et al. Intrahepatic fibrin (ogen) deposition drives liver regeneration after partial hepatectomy in mice and humans. Blood. 2019;133(11):1245–56. https://doi.org/10.1182/blood-2018-08-869057.
Article
CAS
Google Scholar
Beier JI, Guo L, Ritzenthaler JD, Joshi-Barve S, Roman J, Arteel GE. Fibrin-mediated integrin signaling plays a critical role in hepatic regeneration after partial hepatectomy in mice. Ann Hepatol. 2016;15(5):762–72 Available from: https://pubmed.ncbi.nlm.nih.gov/27493116.
CAS
Google Scholar
Banihashemi M, Mohkam M, Safari A, Nezafat N, Negahdaripour M, Mohammadi F, et al. Optimization of three dimensional culturing of the HepG2 cell line in fibrin scaffold. Hepat Mon. 2015;15(3):e22731 Available from: https://pubmed.ncbi.nlm.nih.gov/25861316.
Article
Google Scholar
de Melo BAG, França CG, Dávila JL, Batista NA, Caliari-Oliveira C, d’Ávila MA, et al. Hyaluronic acid and fibrin from L-PRP form semi-IPNs with tunable properties suitable for use in regenerative medicine. Mater Sci Eng C. 2020;109:110547 Available from: http://www.sciencedirect.com/science/article/pii/S0928493119321034.
Article
CAS
Google Scholar
Yukawa H, Noguchi H, Oishi K, Takagi S, Hamaguchi M, Hamajima N, et al. Cell Transplantation of Adipose Tissue-Derived Stem Cells in Combination with Heparin Attenuated Acute Liver Failure in Mice. Cell Transplant. 2009;18(5–6):611–8. https://doi.org/10.1177/096368970901805-617.
Article
Google Scholar
Hu C, Zhao L, Wu Z, Li L. Transplantation of mesenchymal stem cells and their derivatives effectively promotes liver regeneration to attenuate acetaminophen-induced liver injury. Stem Cell Res Ther. 2020;11(1):88. https://doi.org/10.1186/s13287-020-01596-9.
Article
CAS
Google Scholar
Khodabakhsh Aghdam S, Khoshfetrat AB, Rahbarghazi R, Jafarizadeh-Malmiri H, Khaksar M. Collagen modulates functional activity of hepatic cells inside alginate-galactosylated chitosan hydrogel microcapsules. Int J Biol Macromol. 2020;156:1270–8 Available from: http://www.sciencedirect.com/science/article/pii/S0141813019387203.
Article
CAS
Google Scholar
Finoli A, Schmelzer E, Over P, Nettleship I, Gerlach JC. Open-porous hydroxyapatite scaffolds for three-dimensional culture of human adult liver cells. Biomed Res Int. 2016;2016:6040146. https://doi.org/10.1155/2016/6040146 Kundu SC, editor.
Article
CAS
Google Scholar
Moghe PV, Berthiaume F, Ezzell RM, Toner M, Tompkins RG, Yarmush ML. Culture matrix configuration and composition in the maintenance of hepatocyte polarity and function. Biomaterials. 1996;17(3):373–85.
Article
CAS
Google Scholar
Monga SPS, Micsenyi A, Germinaro M, Apte U, Bell A. β-Catenin regulation during matrigel-induced rat hepatocyte differentiation. Cell Tissue Res. 2006;323(1):71–9.
Article
CAS
Google Scholar
Deng X, Cao Y, Yan H, Yang J, Xiong G, Yao H, et al. Enhanced liver functions of HepG2 cells in the alginate/xyloglucan scaffold. Biotechnol Lett. 2015;37(1):235–40. https://doi.org/10.1007/s10529-014-1663-6.
Article
CAS
Google Scholar
Xu L, Wang S, Sui X, Wang Y, Su Y, Huang L, et al. Mesenchymal stem cell-seeded regenerated silk fibroin complex matrices for liver regeneration in an animal model of acute liver failure. ACS Appl Mater Interfaces. 2017;9(17):14716–23. https://doi.org/10.1021/acsami.7b02805.
Article
CAS
Google Scholar
Gilbert TW, Sellaro TL, Badylak SF. Decellularization of tissues and organs. Biomaterials. 2006;27(19):3675–83 Available from: http://www.sciencedirect.com/science/article/pii/S0142961206001682.
CAS
Google Scholar
Zhou P, Huang Y, Guo Y, Wang L, Ling C, Guo Q, et al. Decellularization and Recellularization of rat livers with hepatocytes and endothelial progenitor cells. Artif Organs. 2016;40(3):E25–38 Available from: https://onlinelibrary.wiley.com/doi/abs/10.1111/aor.12645.
Article
CAS
Google Scholar
Shimoda H, Yagi H, Higashi H, Tajima K, Kuroda K, Abe Y, et al. Decellularized liver scaffolds promote liver regeneration after partial hepatectomy. Sci Rep. 2019;9(1):12543. https://doi.org/10.1038/s41598-019-48948-x.
Article
CAS
Google Scholar
Skardal A, Smith L, Bharadwaj S, Atala A, Soker S, Zhang Y. Tissue specific synthetic ECM hydrogels for 3-D in vitro maintenance of hepatocyte function. Biomaterials. 2012;33(18):4565–75 Available from: http://www.sciencedirect.com/science/article/pii/S0142961212003213.
Article
CAS
Google Scholar
Nakamura S, Ijima H. Solubilized matrix derived from decellularized liver as a growth factor-immobilizable scaffold for hepatocyte culture. J Biosci Bioeng. 2013;116(6):746–53 Available from: http://www.sciencedirect.com/science/article/pii/S1389172313002132.
Article
CAS
Google Scholar
Bruinsma BG, Kim Y, Berendsen TA, Ozer S, Yarmush ML, Uygun BE. Layer-by-layer heparinization of decellularized liver matrices to reduce thrombogenicity of tissue engineered grafts. J Clin Transl Res. 2015;1(1):48–56 Available from: https://pubmed.ncbi.nlm.nih.gov/30873444.
Google Scholar
Saleh T, Ahmed E, Yu L, Song S-H, Park K-M, Kwak H-H, et al. Conjugating homogenized liver-extracellular matrix into decellularized hepatic scaffold for liver tissue engineering. J Biomed Mater Res Part A. 2020;108(10):1991–2004 Available from: https://onlinelibrary.wiley.com/doi/abs/10.1002/jbm.a.36920.
Article
CAS
Google Scholar
Rydz J, Sikorska W, Kyulavska M, Christova D. Polyester-based (bio) degradable polymers as environmentally friendly materials for sustainable development. Int J Mol Sci. 2014;16(1):564–96 Available from: https://pubmed.ncbi.nlm.nih.gov/25551604.
Article
CAS
Google Scholar
Kellie G. Introduction to technical nonwovens. In: Kellie GBT-A in TN, editor. Woodhead Publishing Series in Textiles. Cambridge: Woodhead Publishing; 2016. p. 1–17. Available from: http://www.sciencedirect.com/science/article/pii/B9780081005750000012
Hammond JS, Beckingham IJ, Shakesheff KM. Scaffolds for liver tissue engineering. Expert Rev Med Devices. 2006;3(1):21–7. https://doi.org/10.1586/17434440.3.1.21.
Article
CAS
Google Scholar
O’Brien FJ. Biomaterials & scaffolds for tissue engineering. Mater Today. 2011;14(3):88–95 Available from: http://www.sciencedirect.com/science/article/pii/S136970211170058X.
Article
CAS
Google Scholar
Sickles CK, Gross GP. Poly-L-lactic acid. Treasure Island: StatPearls Publishing; 2019. Available from: http://europepmc.org/books/NBK507871
Google Scholar
Mirdamadi ES, Kalhori D, Zakeri N, Azarpira N, Solati-Hashjin M. Liver Tissue Engineering as an Emerging Alternative for Liver Disease Treatment. Tissue Eng Part B Rev. 2020;26(2):145–63.
Article
Google Scholar
Török E, Lutgehetmann M, Bierwolf J, Melbeck S, Düllmann J, Nashan B, et al. Primary human hepatocytes on biodegradable poly(l-lactic acid) matrices: a promising model for improving transplantation efficiency with tissue engineering. Liver Transpl. 2011;17(2):104–14.
Article
Google Scholar
Zhao D, Jiang W, Wang Y, Wang C, Zhang X, Li Q, et al. Three-dimensional-printed poly-L-lactic acid scaffolds with different pore sizes influence periosteal distraction Osteogenesis of a rabbit skull. Biomed Res Int. 2020;2020:7381391. https://doi.org/10.1155/2020/7381391 Dastjerdi R, editor.
Article
CAS
Google Scholar
Balali S, Davachi SM, Sahraeian R, Shiroud Heidari B, Seyfi J, Hejazi I. Preparation and characterization of composite blends based on Polylactic acid/Polycaprolactone and silk. Biomacromolecules. 2018;19(11):4358–69. https://doi.org/10.1021/acs.biomac.8b01254.
Article
CAS
Google Scholar
Semnani D, Naghashzargar E, Hadjianfar M, Dehghan Manshadi F, Mohammadi S, Karbasi S, et al. Evaluation of PCL/chitosan electrospun nanofibers for liver tissue engineering. Int J Polym Mater Polym Biomater. 2017;66(3):149–57. https://doi.org/10.1080/00914037.2016.1190931.
Article
CAS
Google Scholar
Bishi DK, Mathapati S, Venugopal JR, Guhathakurta S, Cherian KM, Ramakrishna S, et al. Trans-differentiation of human mesenchymal stem cells generates functional hepatospheres on poly(l-lactic acid)-co-poly(ε-caprolactone)/collagen nanofibrous scaffolds. J Mater Chem B. 2013;1(32):3972–84.
Article
CAS
Google Scholar
Brown JH, Das P, DiVito MD, Ivancic D, Tan LP, Wertheim JA. Nanofibrous PLGA electrospun scaffolds modified with type I collagen influence hepatocyte function and support viability in vitro. Acta Biomater. 2018;73:217–27 Available from: http://www.sciencedirect.com/science/article/pii/S1742706118300795.
Article
CAS
Google Scholar
Guo T, Lim CG, Noshin M, Ringel JP, Fisher JP. 3D printing bioactive PLGA scaffolds using DMSO as a removable solvent. Bioprinting. 2018;10:e00038 Available from: http://www.sciencedirect.com/science/article/pii/S2405886618300381.
Article
Google Scholar
Mammadov R, Mammadov B, Guler MO, Tekinay AB. Growth Factor binding on heparin mimetic peptide nanofibers. Biomacromolecules. 2012;13(10):3311–9. https://doi.org/10.1021/bm3010897.
Article
CAS
Google Scholar
Wang Y, Kim MH, Shirahama H, Lee JH, Ng SS, Glenn JS, et al. ECM proteins in a microporous scaffold influence hepatocyte morphology, function, and gene expression. Sci Rep. 2016;6(1):37427. https://doi.org/10.1038/srep37427.
Article
CAS
Google Scholar
McCarty WJ, Usta OB, Yarmush ML. A microfabricated platform for generating physiologically-relevant hepatocyte zonation. Sci Rep. 2016;6(1):26868. https://doi.org/10.1038/srep26868.
Article
CAS
Google Scholar
Kim K, Utoh R, Ohashi K, Kikuchi T, Okano T. Fabrication of functional 3D hepatic tissues with polarized hepatocytes by stacking endothelial cell sheets in vitro. J Tissue Eng Regen Med. 2017;11(7):2071–80 Available from: https://onlinelibrary.wiley.com/doi/abs/10.1002/term.2102.
Article
CAS
Google Scholar
Lee H-J, Son MJ, Ahn J, Oh SJ, Lee M, Kim A, et al. Elasticity-based development of functionally enhanced multicellular 3D liver encapsulated in hybrid hydrogel. Acta Biomater. 2017;64:67–79 Available from: http://www.sciencedirect.com/science/article/pii/S174270611730613X.
Article
CAS
Google Scholar
Kaur S, Tripathi DM, Venugopal JR, Ramakrishna S. Advances in biomaterials for hepatic tissue engineering. Curr Opin Biomed Eng. 2020;13:190–6 Available from: http://www.sciencedirect.com/science/article/pii/S2468451120300210.
Article
Google Scholar
Venkatesh SK, Ehman RL. Magnetic resonance Elastography of liver. Magn Reson Imaging Clin. 2014;22(3):433–46. https://doi.org/10.1016/j.mric.2014.05.001.
Article
Google Scholar