Husen A, Siddiqi KS. Phytosynthesis of nanoparticles: concept, controversy and application. Nano Res Lett. 2014;9:229.
Article
CAS
Google Scholar
Siddiqi KS, Husen A, Rao RAK. A review on biosynthesis of silver nanoparticles and their biocidal properties. J Nanobiotechnol. 2018;16:14.
Article
CAS
Google Scholar
Husen A. Introduction and techniques in nanomaterials formulation: An overview. In: Husen A, Jawaid M, editors. Nanomaterials for Agriculture and Forestry Applications. Cambridge: Elsevier Inc; 2020. p. 1–14.
Google Scholar
Siddiqi KS, Husen A. Fabrication of metal and metal oxide nanoparticles by algae and their toxic effects. Nano Res Lett. 2016;11:363.
Article
CAS
Google Scholar
Siddiqi KS, Husen A. Fabrication of metal nanoparticles from fungi and metal salts: scope and application. Nano Res Lett. 2016;11:98.
Article
CAS
Google Scholar
Philip D, Unni C, Aromal SA, Vidhu VK. Murraya koenigii leaf-assisted rapid green synthesis of silver and gold nanoparticles. Spectrochem Acta A Mol Biomol Spectrosc. 2011;78:899–904.
Article
CAS
Google Scholar
Banerjee P, Satapathy M, Mukhopahayay A, Das P. Leaf extract mediated green synthesis of silver nanoparticles from widely available Indian plants: synthesis, characterization, antimicrobial property and toxicity analysis. Bioresour Bioprocess. 2014;1:3.
Article
Google Scholar
Nagar N, Jain S, Kachhawah P, Devra V. Synthesis and characterization of silver nanoparticles via green route. Korean J Chem Eng. 2016;33:2990–7.
Article
CAS
Google Scholar
Husen A. Gold nanoparticles from plant system: synthesis, characterization and their application. In: Ghorbanpour M, Manika K, Varma A, editors. Nanoscience and Plant–Soil Systems. Soil Biology. Cham: Springer, 2017;48:455–479.
Siddiqi KS, Husen A. Recent advances in plant-mediated engineered gold nanoparticles and their application in biological system. J Trace Elements Med Biol. 2017;40:10–23.
Article
CAS
Google Scholar
Siddiqi KS, Rashid M, Rahman A, Tajuddin HA, Rehman S. Biogenic fabrication and characterization of silver nanoparticles using aqueous-ethanolic extract of lichen (Usnea longissima) and their antimicrobial activity. Biomat Res. 2018;22:23.
Article
CAS
Google Scholar
Siddiqi KS, Rashid M, Tajuddin RS, Husen A. Synthesis of silver nanoparticles using aqueous leaf extract of Diospyros montana Roxb. And their antimicrobial activity against some clinical isolates. BioNanoSci. 2019;9:302–12.
Article
Google Scholar
Umer A, Naveed S, Ramzan N, Rafiqui MS. Selection of a suitable method for the synthesis of copper nanoparticles. Nano. 2012;7:1230005.
Article
CAS
Google Scholar
Jain S, Jain A, Kachhawah P, Devra V. Synthesis and size control of copper nanoparticles and their catalytic application. Trans Nonferrous Met Soc China. 2015;25:3995–4000.
Article
CAS
Google Scholar
Tiwari M, Jain P, Hariharapura RC, Narayanan K, Udaya BK, Udupa N, Rao JV. Biosynthesis of copper nanoparticles using copper-resistant Bacillus cereus, a soil isolate. Process Biochem. 2016;51:1348–56.
Article
CAS
Google Scholar
Borkow G, Gabbay J. Copper, an ancient remedy returning to fight microbial, fungal and viral infections. Cur Chem Biol. 2009;3:272–8.
CAS
Google Scholar
Zheng XG, Xu CN, Tomokiyo Y, Tanaka E, Yamada H, Soejima Y. Observation of charge stripes in cupric oxide. Phys Rev Lett. 2000;85:5170–3.
Article
CAS
Google Scholar
Ren G, Hu D, Cheng EW, Vargas-Reus MA, Reip P, Allaker RP. Characterisation of copper oxide nanoparticles for antimicrobial applications. Int J Antimicrob Agent. 2009;33:587–90.
Article
CAS
Google Scholar
Din MI, Arshad F, Hussain Z, Mukhtar M. Green adeptness in the synthesis and stabilization of copper nanoparticles: catalytic, antibacterial, cytotoxicity, and antioxidant activities. Nano Res Lett. 2017;12:638.
Article
CAS
Google Scholar
Apostolov AT, Apostolova IN, Wesselinowa JM. Dielectric constant of multiferroic pure and doped CuO nanoparticles. Solid State Commun. 2014;192:71–4.
Article
CAS
Google Scholar
Thiruvengadam M, Chung IM, Gomathi T, Ansari MA, Khanna VG, Babu V, Rajakumar G. Synthesis, characterization and pharmacological potential of green synthesized copper nanoparticles. Bioprocess Biosyst Eng. 2019;42:1769–77.
Article
CAS
Google Scholar
Pariona N, Mtz-Enriquez AI, Sanchez-Rangel D, Carrion G, Paraguay-Delgado F, Rosas-Saito G. Green-synthesized copper nanoparticles as a potential antifungal against plant pathogens. RSC Adv. 2019;9:18835–43.
Article
CAS
Google Scholar
Lee Y, Choi JR, Lee KJ, Stott NE, Kim D. Large-scale synthesis of copper nanoparticles by chemically controlled reduction for applications of inkjet-printed electronics. Nanotechnology. 2008;19:598–604.
Google Scholar
Rubilar O, Rai M, Tortella G, Diez MC, Seabra AB, Durán N. Biogenic nanoparticles: copper, copper oxides, copper sulphides, complex copper nanostructures and their applications. Biotechnol Lett. 2013;35:1365–75.
Article
CAS
Google Scholar
Waser O, Hess M, Güntner A, Novák P, Pratsinis SE. Size controlled CuO nanoparticles for Li-ion batteries. J Power Sour. 2013;241:415–22.
Article
CAS
Google Scholar
Sharma JK, Akhtar MS, Ameen S, Srivastava P, Singh G. Green synthesis of CuO nanoparticles with leaf extract of Calotropis gigantea and its dye-sensitized solar cells applications. J All Comp. 2015;632:321–5.
Article
CAS
Google Scholar
Wang F, Li H, Yuan H, Sun Y, Chang F, Deng H, Xie L, Li H. A highly sensitive gas sensor based on CuO nanoparticles synthetized via a sol–gel method. RSC Adv. 2016;6:79343–9.
Article
CAS
Google Scholar
Joshi A, Sharma A, Bachheti RK, Husen A, Mishra VK. Plant-mediated synthesis of copper oxide nanoparticles and their biological applications. In: Husen A, Iqbal M, editors. Nanomaterials and Plant Potential. Cham: Springer International Publishing AG; 2019. p. 221–37.
Lee HJ, Song JY, Kim BS. Biological synthesis of copper nanoparticles using Magnolia kobus leaf extract and their antibacterial activity. J Chem Technol Biotechnol. 2013;88:1971–7.
CAS
Google Scholar
Song JY, Jang HK, Kim BS. Biological synthesis of gold nanoparticles using Magnolia kobus and Diopyros kaki leaf extracts. Process Biochem. 2009;44:1133–8.
Article
CAS
Google Scholar
Kulkarni V, Suryawanshi S, Kulkarni P. Biosynthesis of copper nanoparticles using aqueous extract of Eucalyptus sp. plant leaves. Curr Sci. 2015;109:255–27.
CAS
Google Scholar
Nagar N, Devra V. Green synthesis and characterization of copper nanoparticles using Azadirachta indica leaves. Mat Chem Phys. 2018;213:44–51.
Article
CAS
Google Scholar
Brumbaugh AD, Cohen KA, Angelo SKS. Ultrasmall copper nanoparticles synthesized with a plant tea reducing agent. ACS Sustain Chem Eng. 2014;2:1933–9.
Article
CAS
Google Scholar
Pileni MP, Lisiecki I. Nanometer metallic copper particle synthesis in reverse micelles. Colloids Surf A Physicochem Eng Asp. 1993;80:63–8.
Article
CAS
Google Scholar
Singh M, Sinha I, Premkumar M, Singh AK, Mandal RK. Structural and surface plasmon behavior of cu nanoparticles using different stabilizers. Colloid Surf A. 2010;359:88–94.
Article
CAS
Google Scholar
Vazquez-Vazquez C, Banobre-Lopez M, Mitra A, Arturo Lopez-Quintela M, Rivas J. Synthesis of small atomic copper clusters in microemulsions. Langmuir. 2009;25:8208–16.
Article
CAS
Google Scholar
Narayanan KB, Sakthivel N. Coriander leaf mediated biosynthesis of gold nanoparticles. Mater Lett. 2008;62:4588–90.
Article
CAS
Google Scholar
Sheny DS, Mathew J, Philip D. Phytosynthesis of au, Ag and au−Ag bimetallic nanoparticles using aqueous extract and dried leaf of Anacardium occidentale. Spectrochim Acta Part A. 2011;79:254–62.
Article
CAS
Google Scholar
Yu W, Xie H, Chen L, Li Y, Zhang C. Synthesis and characterization of monodispersed copper colloids in polar solvents. Nano Res Lett. 2009;4:465–70.
Article
CAS
Google Scholar
Engels V, Benaskar F, Jefferson DA, Johnson BFG, Wheatley AEH. Nanoparticulate copper - routes towards oxidative stability. Dalton Trans. 2010;39:6496–502.
CAS
Google Scholar
Zhang Y, Zhu P, Li G, Zhao T, Fu X, Sun R, Zhou F, Wong C. Facile preparation of monodisperse, impurity-free, and antioxidation copper nanoparticles on a large scale for application in conductive ink. ACS Appl Mater Interf. 2014;6:560–7.
Article
CAS
Google Scholar
Cheirmadurai K, Biswas S, Murali R, Thanikaivelan P. Green synthesis of copper nanoparticles and conducting nanobiocomposites using plant and animal sources. RSC Adv. 2016;4:19507–11.
Article
CAS
Google Scholar
Wang Y, Biradar AV, Wang G, Sharma KK, Duncan CT, Rangan S, Asefa T. Controlled synthesis of water-dispersible faceted crystalline copper nanoparticles and their catalytic properties. Chemistry. 2010;16:10735–43.
Article
CAS
Google Scholar
Demirskyi D, Agrawal D, Ragulya A. Neck formation between copper spherical particles under single-mode and multimode microwave sintering. Mat Sci Eng: A. 2010;A527:2142–5.
Article
CAS
Google Scholar
Swarnkar RK, Singh SC, Gopal R. Effect of aging on copper nanoparticles synthesized by pulsed laser ablation in water: structural and optical characterizations. Bull Mater Sci. 2011;34:1363–9.
Article
CAS
Google Scholar
Shende S, Ingle AP, Gade A, Rai M. Green synthesis of copper nanoparticles by Citrus medica Linn. (Idilimbu) juice and its antimicrobial activity. World J Microbiol Biotechnol. 2015;31:865–73.
Article
CAS
Google Scholar
Sastry ABS, Aamanchi RBK, Rama Linga Prasad CS, Murty BS. Large-scale green synthesis of cu nanoparticles. Environ Chem Lett. 2013;11:183–7.
Article
CAS
Google Scholar
Hirai H, Wakabayashi H, Komiyama M. Preparation of polymer-protected colloidal dispersions of copper. Bull Chem Soc Japan. 1986;59:367–72.
Article
CAS
Google Scholar
Zhu YJ, Qian YT, Zhang MW, Chen ZY, Xu DF. Preparation and characterization of nanocrystalline powders of cuprous oxide by using C-radiation. Mater Res Bull. 1994;29:377–83.
Article
CAS
Google Scholar
Nasrollahzadeh M, Sajadi SM, Khalaj M. Green synthesis of copper nanoparticles using aqueous extract of the leaves of Euphorbia esula L and their catalytic activity for ligand-free Ullmanncoupling reaction and reduction of 4-nitrophenol. RSC Adv. 2014;4:47313–8.
Article
CAS
Google Scholar
Kaur P, Thakur R, Chaudhury A. Biogenesis of copper nanoparticles using peel extract of Punica granatum and their antimicrobial activity against opportunistic pathogens. Green Chem Lett Rev. 2016;9:33–8.
Article
CAS
Google Scholar
Hashemipour H, Zadeh ME, Pourakbari R, Rahimi P. Investigation on synthesis and size control of copper nanoparticle via electrochemical and chemical reduction method. Int J Phys Sci. 2011;6:4331–6.
CAS
Google Scholar
Ashfaq M, Verma N, Khan S. Carbon nanofibers as a micronutrient carrier in plants: efficient translocation and controlled release of cu nanoparticles. Environ Sci: Nano. 2017;4:138–48.
CAS
Google Scholar
Padil VVT, Černík M. Green synthesis of copper oxide nanoparticles using gum karaya as a biotemplate and their antibacterial application. Int J Nanomedicine. 2013;8:889–98.
Google Scholar
Das D, Nath BC, Phukon P, Dolui SK. Synthesis and evaluation of antioxidant and antibacterial behavior of CuO nanoparticles. Coll Surf B Biointerf. 2013;101:430–3.
Article
CAS
Google Scholar
Abboud Y, Saffaj T, Chagraoui A, El Bouari A, Brouzi K, Tanane O, Ihssane B. Biosynthesis, characterization and antimicrobial activity of copper oxide nanoparticles (CONPs) produced using brown alga extract (Bifurcaria bifurcata). Appl Nanosci. 2014;4:571–6.
Article
CAS
Google Scholar
Krithiga N, Jayachitra A, Rajalakshmi A. Synthesis, characterization and analysis of the effect of copper oxide nanoparticles in biological systems. Ind J Nano Sci. 2013;1:6–15.
Google Scholar
Borgohain K, Murase N, Mahamuni S. Synthesis and properties of Cu2O quantum particles. J Appl Phys. 2002;92:1292–7.
Article
CAS
Google Scholar
Yin M, Wu CK, Lou Y, Burda C, Koberstein JT, Zhu Y, O’Brien S. Copper oxide nanocrystals. J Am Chem Soc. 2005;127:9506–11.
Article
CAS
Google Scholar
Rahman A, Ismail A, Jumbianti D, Magdalena S, Sudrajat H. Synthesis of copper oxide nanoparticles by using Phormidium cyanobacterium. Indo J Chem. 2009;9:355–60.
Article
Google Scholar
Kiruba Daniel SCG, Nehru K, Sivakumar M. Rapid biosynthesis of silver nanoparticles using Eichornia crassipes and its antibacterial activity. Curr Nanosci. 2012;8:1–5.
Article
Google Scholar
Vijay Kumar PPN, Shameem U, Kollu P, Kalyani RL, Pammi SVN. Green synthesis of copper oxide nanoparticles using Aloe vera leaf extract and its antibacterial activity against fish bacterial pathogens. BioNanoSci. 2015;5:135–9.
Article
Google Scholar
Vishveshvar K, Aravind Krishnan MV, Haribabu K, Vishnuprasad S. Green synthesis of copper oxide nanoparticles using Ixiro coccinea plant leaves and its characterization. BioNanoSci. 2018;8:554–8.
Article
Google Scholar
Vasantharaj S, Sathiyavimal S, Saravanan M, Senthilkumar P, Kavitha G, Shanmugavel M, Manikandan E, Pugazhendhi A. Synthesis of ecofriendly copper oxide nanoparticles for fabrication over textile fabrics: characterization of antibacterial activity and dye degradation potential. J Photochem Photobiol B Biol. 2018;191:149.
Google Scholar
Singh J, Kumar V, Kim KH, Rawat M. Biogenic synthesis of copper oxide nanoparticles using plant extract and its prodigious potential for photocatalytic degradation of dyes. Environ Res. 2019;177:108569.
Article
CAS
Google Scholar
Vanathi P, Rajiv P, Sivaraj R. Synthesis and characterization of Eichhornia-mediated copper oxide nanoparticles and assessing their antifungal activity against plant pathogens. Bull Mater Sci. 2016;39:1165–70.
Article
CAS
Google Scholar
Ghidan AY, Al-Antary TM, Awwad AM. Green synthesis of copper oxide nanoparticles using Punica granatum peels extract: effect on green peach aphid. Environ Nanotechnol Monit Manag. 2016;6:95–8.
Google Scholar
Sivaraj R, Rahman PK, Rajiv P, Salam HA, Venckatesh R. Biogenic copper oxide nanoparticles synthesis using Tabernaemontana divaricate leaf extract and its antibacterial activity against urinary tract pathogen. Spectrochim Acta A Mol Biomol Spectrosc. 2014;133:178–81.
Article
CAS
Google Scholar
Huang J, Li Q, Sun D, Lu Y, Su Y, Yang X, Wang H, Wang Y, Shao W, He N, Hong J, Chen C. Biosynthesis of silver and gold nanoparticles by novel sun dried Cinnamomum camphora leaf. Nanotechnology. 2007;18:105104–15.
Article
CAS
Google Scholar
Gopinath V, Priyadarshini S, Al-Maleki AR, Alagiri M, Yahya R, Saravanan S, Vadivelu J. In vitro toxicity, apoptosis and antimicrobial effects of phyto-mediated copper oxide nanoparticles. RSC Adv. 2016;6:110986–95.
Article
CAS
Google Scholar
Saif S, Tahir A, Asim T, Chen Y. Plant mediated green synthesis of CuO nanoparticles: comparison of toxicity of engineered and plant mediated CuO nanoparticles towards Daphnia magna. Nanomaterials. 2016;6:205.
Article
CAS
Google Scholar
Odzak N, Kistler D, Behra R, Sigg L. Dissolution of metal and metal oxide nanoparticles in aqueous media. Environ Pollut. 2014;191:132–8.
Article
CAS
Google Scholar
Adam N, Leroux F, Knapen D, Bals S, Blust R. The uptake of ZnO and CuO nanoparticles in the water-flea Daphnia magna under acute exposure scenarios. Environ Pollut. 2014;194:130–7.
Article
CAS
Google Scholar
Regier N, Cosio C, von Moos N, Slaveykova VI. Effects of copper-oxide nanoparticles, dissolved copper and ultraviolet radiation on copper bioaccumulation, photosynthesis and oxidative stress in the aquatic macrophyte Elodea nuttallii. Chemosphere. 2015;128:56–61.
Article
CAS
Google Scholar
Perreault F, Oukarroum A, Melegari SP, Matias WG, Popovic R. Polymer coating of copper oxide nanoparticles increases nanoparticles uptake and toxicity in the green alga Chlamydomonas reinhardtii. Chemosphere. 2012;87:1388–94.
Article
CAS
Google Scholar
Shi J, Abid AD, Kennedy IM, Hristova KR, Silk WK. To duckweeds (Landoltia punctata), nanoparticulate copper oxide is more inhibitory than the soluble copper in the bulk solution. Environ Pollut. 2011;159:1277–82.
Article
CAS
Google Scholar
Raja Naika H, Lingaraju K, Manjunath K, Kumar D, Nagaraju G, Suresh D, Nagabhushana H. Green synthesis of CuO nanoparticles using Gloriosa superba L. extract and their antibacterial activity. J Taibah Univ Sci. 2015;9:7–12.
Article
Google Scholar
Sankar R, Manikandan P, Malarvizhi V, Fathima T, Shivashangari KS, Ravikumar V. Green synthesis of colloidal copper oxide nanoparticles using Carica papaya and its application in photocatalytic dye degradation. Spectrochim Acta A Mol Biomol Spectrosc. 2014;121:746–50.
Article
CAS
Google Scholar
Ethiraj AS, Kang DJ. Synthesis and characterization of CuO nanowires by a simple wet chemical method. Nano Res Lett. 2012;7:70.
Article
CAS
Google Scholar
Nasrollahzadeh M, Maham M, Sajadi SM. Green synthesis of CuO nanoparticles by aqueous extract of Gundelia tournefortii and evaluation of their catalytic activity for the synthesis of N-monosubstituted ureas and reduction of 4-nitrophenol. J Colloid Interface Sci. 2015;455:245–53.
Article
CAS
Google Scholar
Adzet T, Puigmacia M. High-performance liquid chromatography of caffeoylquinic acid derivatives of Cynara scolymus L. leaves. J Chromatograph A. 1985;348:447–53.
Article
CAS
Google Scholar
Haghi G, Hatami A, Arshi R. Distribution of caffeic acid derivatives in Gundelia tournefortii L. Food Chem. 2011;124:1029–35.
Article
CAS
Google Scholar
Nasrollahzadeh M, Mohammad Sajadi S, Rostami-Vartooni A. Green synthesis of CuO nanoparticles by aqueous extract of Anthemis nobilis flowers and their catalytic activity for the A3 coupling reaction. J Colloid Interface Sci. 2015;459:183–8.
Article
CAS
Google Scholar
Ullah H, Ullah Z, Fazal A, Irfan M. Use of vegetable waste extracts for controlling microstructure of CuO nanoparticles: green synthesis, characterization, and photocatalytic applications. J Chem. 2017;2721798:5.
Google Scholar
Ranjbar-Karimi R, Bazmandegan-Shamili A, Aslani A, Kaviani K. Sonochemical synthesis, characterization and thermal and optical analysis of CuO nanoparticles. Phys B Condens Matter. 2010;405:3096–100.
Article
CAS
Google Scholar
Nasrollahzadeh M, Sajadi SM, Rostami-Vartooni A, Bagherzadeh M. Green synthesis of Pd/CuO nanoparticles by Theobroma cacao L. seeds extract and their catalytic performance for the reduction of 4-nitrophenol and phosphine-free heck coupling reaction under aerobic conditions. J Colloid Interface Sci. 2015;448:106–13.
Article
CAS
Google Scholar
Geil P, Anderson J. Nutrition and health implications of dry beans: a review. J Am Coll Nutr. 1994;13:549–58.
Article
CAS
Google Scholar
Mishra SB, Rao CV, Ojha SK, Vijayakumar M, Verma A. An analytical review of plants for anti diabetic activity with their phytoconstituent and mechanism of action: a review. Int J Pharmacol Sci Res. 2010;1:29–44.
Google Scholar
Bachheti A, Sharma A, Bachheti RK, Husen A, Pandey DP. Plant allelochemicals and their various application. In: Mérillon JM, Ramawat KG, editors. Co-Evolution of Secondary Metabolites, Reference Series in Phytochemistry. Cham: Springer International Publishing AG. https://doi.org/10.1007/978-3-319-76887-8_14-1 (2019).
Nagajyothi PC, Muthuraman P, Sreekanth TVM, Kim DH, Shim J. Green synthesis: in-vitro anticancer activity of copper oxide nanoparticles against human cervical carcinoma cells. Arab J Chem. 2017;10:215–25.
Article
CAS
Google Scholar
Bawadi HA. Inhibition of Caco-2 colon, MCF-7, and Hs578T breast, and DU 145 prostatic cancer cell proliferation by water soluble black bean condensed tannins. Can Lett. 2005;218:153–62.
Article
CAS
Google Scholar
Bobe G, Barret KG, Mentor-Marcel RA, Saffiotti U, Young MR, Colburn NH, Albert PS, Bennink MR, Lanza E. Dietary cooked navy beans and their fractions attenuate colon carcinogenesis in azoxymethane-induced Ob/Ob mice. Nutri Cancer. 2008;60:373–81.
Article
CAS
Google Scholar
Hangen L, Bennik MR. Consumption of black beans and navy beans (Phaseolus vulgaris) reduced azoxymethane-induced colon cancer in rats. Nutr Cancer. 2002;44:60–5.
Article
CAS
Google Scholar
Thompson MD, Mensack MM, Jiang W, Zhu Z, Lewis MR, McGinley JN, Brick MA, Thompson HJ. Cell signaling pathways associated with a reduction in mammary cancer burden by dietary common bean (Phaseolus vulgaris L.). Carcinogenesis. 2012;33:226–32.
Article
CAS
Google Scholar
Mukhopadhyay R, Kazi J, Debnath MC. Synthesis and characterization of copper nanoparticles stabilized with Quisqualis indica extract: evaluation of its cytotoxicity and apoptosis in B16F10 melanoma cells. Biomed Pharmacother. 2018;97:1373–85.
Article
CAS
Google Scholar
Khani R, Roostaei B, Bagherzade G, Moudi M. Green synthesis of copper nanoparticles by fruit extract of Ziziphus spina-christi (L.) Willd.: application for adsorption of triphenylmethane dye and antibacterial assay. J Mol Liq. 2018;255:541–9.
Article
CAS
Google Scholar
Machado TDB, Leal ICR, Amaral ACF, Dos Santos KRN, Da Silva MG, Kuster RM. Antimicrobial Ellagitannin of Punica granatum Fruits. J Braz Chem Soc. 2002;13:606–10.
Article
CAS
Google Scholar
Voravuthikunchai SP, Sririrak T, Limsuwan S, Supawita T, Iida T, Honda T. Inhibitory effects of active compounds from Punica granatum pericarp on Verocytotoxin production by Enterohemorrhagic Escherichia coli O157: H7. J Health Sci. 2005;51:590–6.
Article
CAS
Google Scholar
Naz S, Siddiqi R, Ahmad S, Rasool SA, Sayeed SAJ. Antibacterial activity directed isolation of compounds from Punica granatum. J Food Sci. 2007;72:341–5.
Article
CAS
Google Scholar
Azam A, Ahmed AS, Oves M, Khan MS, Memic A. Size-dependent antimicrobial properties of CuO nanoparticles against gram-positive and -negative bacterial strains. Int J Nanomedicine. 2012;7:3527–35.
Article
CAS
Google Scholar
Nasrollahzadeh M, Maham M, Rostami-Vartooni A, Bagherzadeh M, Sajadi SM. Barberry fruit extract assisted in situ green synthesis of cu nanoparticles supported on a reduced graphene oxide–Fe3O4 nanocomposite as a magnetically separable and reusable catalyst for the O-arylation of phenols with aryl halides under ligand-free conditions. RSC Adv. 2015;5:64769–80.
Article
CAS
Google Scholar
Getnet Z, Husen A, Fetene M, Yemata G. Growth, water status, physiological, biochemical and yield response of stay green sorghum {Sorghum bicolor (L.) Moench} varieties-a field trial under drought-prone area in Amhara regional state, Ethiopia. J Agron. 2015;14:188–202.
Article
CAS
Google Scholar
Embiale A, Hussein M, Husen A, Sahile S, Mohammed K. Differential sensitivity of Pisum sativum L. cultivars to water-deficit stress: changes in growth, water status, chlorophyll fluorescence and gas exchange attributes. J Agron. 2016;15:45–57.
Article
CAS
Google Scholar
Siddiqi KS, Husen A. Engineered gold nanoparticles and plant adaptation potential. Nano Res Lett. 2016;11:400.
Article
CAS
Google Scholar
Siddiqi KS, Husen A. Plant response to engineered metal oxide nanoparticles. Nano Res Lett. 2017;12:92.
Article
CAS
Google Scholar
Husen A, Iqbal M, Aref IM. Plant growth and foliar characteristics of faba bean (Vicia faba L.) as affected by indole-acetic acid under water-sufficient and water-deficient conditions. J Environ Biol. 2017;38:179–86.
Article
Google Scholar
Husen A, Iqbal M, Sohrab SS, Ansari MKA. Salicylic acid alleviates salinity-caused damage to foliar functions, plant growth and antioxidant system in Ethiopian mustard (Brassica carinata A. Br.). Agri Food Sec. 2018;7:44.
Article
Google Scholar
Husen A, Iqbal M, Khanum N, Aref IM, Sohrab SS, Meshresa G. Modulation of salt-stress tolerance of Niger (Guizotia abyssinica), an oilseed plant, by application of salicylic acid. J Environ Biol. 2019;40:94–104.
Article
Google Scholar
Dimkpa CO, McLean JE, Latta DE, Manangon E, Britt DW, Johnson WP, Boyanov MI, Anderson AJ. CuO and ZnO nanoparticles: phtotoxicity, metal speciation, and induction of oxidative stress in sand-grown wheat. J Nanopart Res. 2012;14:1125–9.
Article
CAS
Google Scholar
Pradhan SP, Patra S, Das S, Chandra S, Mitra KK, Dey S, Akbar P, Palit A, Goswani A. Photochemical modulation of biosafe manganese nanoparticles on Vigna radiata: a detailed molecular, biochemical, and biophysical study. Environ Sci Technol. 2013;47:13122–31.
Article
CAS
Google Scholar
Yasmeen F, Raja NI, Razzaq A, Komatsu S. Proteomic and physiological analyses of wheat seeds exposed to copper and iron nanoparticles. Biochim Biophys Acta. 1865;2017:28–42.
Google Scholar
Ashfaq M, Singh S, Sharma A, Verma N. Cytotoxic evaluation of the hierarchical web of carbon micronanofibers. Ind Eng Chem Res. 2013;52:4672–82.
Article
CAS
Google Scholar
Nair PMG, Chung IM. Impact of copper oxide nanoparticles exposure on Arabidopsis thaliana growth, root system development, root lignificaion, and molecular level changes. Environ Sci Pollut Res. 2014;21:12709–22.
Article
CAS
Google Scholar
Lequeux H, Hermans C, Lutts S, Nathalie V. Response to copper excess in Arabidopsis thaliana: impact on the root system architecture, hormone distribution, lignin accumulation and mineral profile. Plant Physiol Biochem. 2010;48:673–82.
Article
CAS
Google Scholar
Husen A. Growth characteristics, physiological and metabolic responses of teak (Tectona grandis Linn. F.) clones differing in rejuvenation capacity subjected to drought stress. Silvae Gene. 2010;59:124–36.
Article
Google Scholar
Chung IM, Rekha K, Venkidasamy B, Thiruvengadam M. Effect of copper oxide nanoparticles on the physiology, bioactive molecules, and transcriptional changes in Brassica rapa ssp. rapa seedlings. Water Air Soil Pollut. 2019;230:48.
Article
CAS
Google Scholar
Karlsson HL, Cronholm P, Gustafsson J, Moller L. Copper oxide nanoparticles are highly toxic: a comparison between metal oxide nanoparticles and carbon nanotubes. Chem Res Toxicol. 2008;21:1726–32.
Article
CAS
Google Scholar
Heinlaan M, Ivask A, Blinova I, Dubourguier HC, Kahru A. Toxicity of nanosized and bulk ZnO, CuO and TiO2 to bacteria Vibrio fischeri and crustaceans Daphnia magna and Thamnocephalus platyurus. Chemosphere. 2008;71:1308–16.
Article
CAS
Google Scholar
Tavares KP, Caloto-Oliveira Á, Vicentini DS, Melegari SP, Matias WG, Barbosa S, Kummrow F. Acute toxicity of copper and chromium oxide nanoparticles to Daphnia similis. Ecotoxicol Environ Contam. 2014;9:43–50.
Google Scholar
Adam N, Vakurov A, Knapen D, Blust R. The chronic toxicity of CuO nanoparticles and copper salt to Daphnia magna. J Hazard Mater. 2015;283:416–22.
Article
CAS
Google Scholar
Rajeshkumar S, Menon S, Venkat Kumar S, Tambuwala MM, Bakshi HA, Mehta M, Satija S, Gupta G, Chellappan DK, Thangavelu L, Dua K. Antibacterial and antioxidant potential of biosynthesized copper nanoparticles mediated through Cissus arnotiana plant extract. J Photochem Photobiol B. 2019;197:111531.
Article
CAS
Google Scholar
Asghar MA, Zahir E, Shahid SM, Khan MN, Asghar MA, Iqbal J, Walker G. Iron, copper and silver nanoparticles: green synthesis using green and black tea leaves extracts and evaluation of antibacterial, antifungal and aflatoxin B1 adsorption activity. LWT. 2018;90:98–107.
Article
CAS
Google Scholar
Roy K, Ghosh CK, Sarkar CK. Rapid detection of hazardous H2O2 by biogenic copper nanoparticles synthesized using Eichhornia crassipes extract. Microsyst Technol. 2019;25:1699–703.
Article
CAS
Google Scholar
Zangeneh MM, Ghaneialvar H, Akbaribazm H, Ghanimatdan M, Abbasi N, Goorani S, Pirabbasi E, Zangeneh A. Novel synthesis of Falcaria vulgaris leaf extract conjugated copper nanoparticles with potent cytotoxicity, antioxidant, antifungal, antibacterial, and cutaneous wound healing activities under in vitro and in vivo condition. J Photochem Photobiol B Biol. 2019;197:111556.
Article
CAS
Google Scholar
Rajeshkumar S, Rinith G. Nanostructural characterization of antimicrobial and antioxidant copper nanoparticles synthesized using novel Persea americana seeds. OpenNano. 2018;3:18–27.
Article
Google Scholar
Kerour A, Boudjadar S, Bourzami R, Allouche B. Eco-friendly synthesis of cuprous oxide (Cu2O) nanoparticles and improvement of their solar photocatalytic activities. J Solid State Chem. 2018;263:79–83.
Article
CAS
Google Scholar
Mehr ES, Sorbiun M, Ramazani A, Fardood ST. Plant-mediated synthesis of zinc oxide and copper oxide nanoparticles by using Ferulago angulata (Schlecht) Boiss extract and comparison of their photocatalytic degradation of Rhodamine B (RhB) under visible light irradiation. J Mater Sci Mater Electron. 2018;29:1333–40.
Article
CAS
Google Scholar
Dobrucka R. Antioxidant and catalytic activity of biosynthesized CuO nanoparticles using extract of Galeopsidis herba. J Inorg Organomet Polym Mat. 2018;28:812–9.
Article
CAS
Google Scholar
Jadhav MS, Kulkarni S, Raikar P, Barretto DA, Vootla SK, Raikar US. Green biosynthesis of CuO & Ag–CuO nanoparticles from Malus domestica leaf extract and evaluation of antibacterial, antioxidant and DNA cleavage activities. New J Chem. 2018;42:204–13.
Article
CAS
Google Scholar
Khatami M, Varma RS, Heydari M, Peydayesh M, Sedighi A, Askari HA, Rohani M, Baniasadi M, Arkia S, Seyedi F, Khatami S. Copper oxide nanoparticles greener synthesis using tea and its antifungal efficiency on Fusarium solani. Geomicrobiol J. 2019;36:777–81.
Article
CAS
Google Scholar
Akhter SMH, Mohammad F, Ahmad S. Terminalia belerica mediated green synthesis of nanoparticles of copper, iron and zinc metal oxides as the alternate antibacterial agents against some common pathogens. BioNanoSci. 2019;9:365–72.
Article
Google Scholar