Leung WWF, Hau CWY, Choy HF. Microfiber-nanofiber composite filter for high-efficiency and low pressure drop under nano-aerosol loading. Sep Purif Technol. 2018;206:26–38.
Article
CAS
Google Scholar
Fathi-Azarbayjani A, Khu JV, Chan YW, Chan SY. Development and characterization of skin permeation retardants and enhancers: a comparative study of levothyroxine-loaded PNIPAM, PLA, PLGA and EC microparticles. Biopharm Drug Dispos. 2011;32:380–8.
Article
Google Scholar
Goyal R, Macri LK, Kaplan HM, Kohn J. Nanoparticles and nanofibers for topical drug delivery. J Control Release. 2016;240:77–92.
Article
CAS
Google Scholar
Ning W, Shang P, Wu J, Shi X, Liu S. Novel amphiphilic, biodegradable, biocompatible, thermo-responsive ABA triblock copolymers based on PCL and PEG analogues via a combination of ROP and RAFT: synthesis, characterization, and sustained drug release from self-assembled micelles. Polymers. 2018;10(2):214.
Article
Google Scholar
Teraoka R, Konishi Y, Matsuda Y. Photochemical and oxidative degradation of the solid-state tretinoin tocoferil. Chem Pharm Bull. 2001;49(4):368–72.
Article
CAS
Google Scholar
Fachinetto JM, Ourique AF, Tedesco SB, Silva AC, Beck RCR. Tretinoin-loaded polymeric nanocapsules: evaluation of the potential toimprove the antiproliferative activities on Allium cepa root-tip compared to the free drug. Lat Am J Pharm. 2008;27(5):668–73.
CAS
Google Scholar
Schultze E, Ourique A, Yurgel VC, Begnini KR, Thurow H, de Leon PMM, Campos VF, Dellagostin OA, Guterres SR, Pohlmann AR, Seixas FK. Encapsulation in lipid-core nanocapsules overcomes lung cancer cell resistance to tretinoin. Eur J Pharm Biopharm. 2014;87(1):55–63.
Article
CAS
Google Scholar
Lai F, Pireddu R, Corrias F, Fadda AM, Valenti D, Pini E, Sinico C. Nanosuspension improves tretinoin photostability and delivery to the skin. Int J Pharm. 2013;458(1):104–9.
Article
CAS
Google Scholar
Ridolfi DM, Marcato PD, Justo GZ, Cordi L, Machado D, Durán N. Chitosan-solid lipid nanoparticles as carriers for topical delivery of tretinoin. Colloids Surf B: Biointerfaces. 2012;93:36–40.
Article
CAS
Google Scholar
Tan HH. Topical antibacterial treatments for acne vulgaris. Am J Clin Dermatol. 2004;5(2):79–84.
Article
CAS
Google Scholar
Schmidt N, Gans EH. Tretinoin: a review of its anti-inflammatory properties in the treatment of acne. J Clin Aesthet Dermatol. 2011;4(11):22–9.
Google Scholar
Tonglairoum P, Ngawhirunpat T, Rojanarata T, Kaomongkolgit R, Opanasopit P. Fabrication of a novel scaffold of clotrimazole-microemulsion-containing nanofibers using an electrospinning process for oral candidiasis applications. Colloids Surf B: Biointerfaces. 2015;126:18–25.
Article
CAS
Google Scholar
CLSI, C. 2012. Performance standards for antimicrobial susceptibility testing. Clinical and laboratory standards institute (M100eS22).
Google Scholar
Canbolat MF, Celebioglu A, Uyar T. Drug delivery system based on cyclodextrin-naproxen inclusion complex incorporated in electrospun polycaprolactone nanofibers. Colloids Surf B: Biointerfaces. 2014;115:15–21.
Article
CAS
Google Scholar
Pillay V, Dott C, Choonara YE, Tyagi C, Tomar L, Kumar P, du Toit LC, Ndesendo VM. A review of the effect of processing variables on the fabrication of electrospun nanofibers for drug delivery applications. J Nanomater. 2013;789289:22.
Google Scholar
Ghate VM, Lewis SA, Prabhu P, Dubey A, Patel N. Nanostructured lipid carriers for the topical delivery of tretinoin. Eur J Pharm Biopharm. 2016;108:253–61.
Article
CAS
Google Scholar
Liu M, Luo G, Wang Y, He W, Liu T, Zhou D, Hu X, Xing M, Wu J. Optimization and integration of nanosilver on polycaprolactone nanofibrous mesh for bacterial inhibition and wound healing in vitro and in vivo. Int J Nanomedicine. 2017;12:6827–40.
Article
CAS
Google Scholar
Natarajan V, Krithica N, Madhan B, Sehgal PK. Formulation and evaluation of quercetin polycaprolactone microspheres for the treatment of rheumatoid arthritis. J Pharm Sci. 2011;100(1):195–205.
Article
CAS
Google Scholar
Salem IB, Mezni M, Boulila A, Hamdi M, Saidi M. Removal of penicillin G and erythromycin with ionizing radiation followed by biological treatment. Curr Microbiol. 2016;73(4):582–6.
Article
Google Scholar
Samprasit W, Rojanarata T, Akkaramongkolporn P, Ngawhirunpat T, Kaomongkolgit R, Opanasopit P. Fabrication and in vitro/in vivo performance of mucoadhesive electrospun nanofiber mats containing α-mangostin. AAPS PharmSciTech. 2015;16(5):1140–52.
Article
CAS
Google Scholar
Hall Barrientos IJ, Paladino E, Szabó P, Brozio S, Hall PJ, Oseghale CI, Passarelli MK, Moug SJ, Black RA, Wilson CG, Zelkó R, Lamprou DA. Electrospun collagen-based nanofibres: a sustainable material for improved antibiotic utilisation in tissue engineering applications. Int J Pharm. 2017;531(1):67–79.
Article
CAS
Google Scholar
Lapteva M, Möller M, Gurny R, Kalia YN. Self-assembled polymeric nanocarriers for the targeted delivery of retinoic acid to the hair follicle. Nanoscale. 2015;7(44):18651–62.
Article
CAS
Google Scholar
Pechere M, Germanier L, Siegenthaler G, Pechère JC, Saurat JH. The antibacterial activity of topical retinoids: the case of retinaldehyde. Dermatology. 2002;205(2):153–8.
Article
CAS
Google Scholar
Lee WS, Park YS, Cho YK. Significantly enhanced antibacterial activity of TiO 2 nanofibers with hierarchical nanostructures and controlled crystallinity. Analyst. 2015;140(2):616–22.
Article
CAS
Google Scholar
Leyden JJ. In vivo antibacterial effects of tretinoin-clindamycin and clindamycin alone on Propionibacterium acnes with varying clindamycin minimum inhibitory. J Drugs Dermatol. 2012;11(12):1434–8.
CAS
Google Scholar