Lee JH, Yi GS, Lee JW, Kim DJ. Physicochemical characterization of porcine bone-derived grafting material and comparison with bovine xenografts for dental applications. J Periodontal Implant Sci. 2017;47(6):388–401. https://doi.org/10.5051/jpis.2017.47.6.388.
Article
CAS
Google Scholar
Sohn H-S, Oh J-K. Review of bone graft and bone substitutes with an emphasis on fracture surgeries. Biomater Res. 2019;23(1):9. https://doi.org/10.1186/s40824-019-0157-y.
Article
Google Scholar
Shin SY, Rios HF, Giannobile WV, Oh TJ. Periodontal regeneration: current therapies: current therapies. Stem Cell Biol Tissue Eng Dent Sci. 2015:459–69. https://doi.org/10.1016/B978-0-12-397157-9.00040-0.
Wang W, Yeung KWK. Bone grafts and biomaterials substitutes for bone defect repair: a review. Bioact Mater. 2017;2(4):224–47. https://doi.org/10.1016/j.bioactmat.2017.05.007.
Article
Google Scholar
Yi M-H, Lee J-E, Kim C-B, Lee K-W, Lee K-H. Locally controlled diffusive release of bone morphogenetic Protein-2 using micropatterned gelatin methacrylate hydrogel carriers. Biochip J. 2020;14(4):405–20. https://doi.org/10.1007/s13206-020-4411-0.
Article
CAS
Google Scholar
Samsell B, Softic D, Qin X, McLean J, Sohoni P, Gonzales K, et al. Preservation of allograft bone using a glycerol solution: a compilation of original preclinical research. Biomater Res. 2019;23(1):5. https://doi.org/10.1186/s40824-019-0154-1.
Article
Google Scholar
Peled ZM, Warren AG, Johnston P, Yaremchuk MJ. The use of alloplastic materials in rhinoplasty surgery: A meta-analysis. Plast Reconstr Surg. 2008;121:85e–92e. https://doi.org/10.1097/01.prs.0000299386.73127.a7.
Article
CAS
Google Scholar
Chung C-H, Kim Y-K, Lee J-S, Jung U-W, Pang E-K, Choi S-H. Rapid bone regeneration by Escherichia coli-derived recombinant human bone morphogenetic protein-2 loaded on a hydroxyapatite carrier in the rabbit calvarial defect model. Biomater Res. 2015;19(1):7. https://doi.org/10.1186/s40824-015-0039-x.
Article
CAS
Google Scholar
Lee JH, Rim NG, Jung HS, Shin H. Control of osteogenic differentiation and mineralization of human mesenchymal stem cells on composite nanofibers containing poly [lactic-co-(glycolic acid)] and hydroxyapatite. Macromol Biosci. 2010;10(2):173–82. https://doi.org/10.1002/mabi.200900169.
Article
CAS
Google Scholar
Jun S-H, Lee E-J, Jang T-S, Kim H-E, Jang J-H, Koh Y-H. Bone morphogenic protein-2 (BMP-2) loaded hybrid coating on porous hydroxyapatite scaffolds for bone tissue engineering. J Mater Sci Mater Med. 2013;24(3):773–82. https://doi.org/10.1007/s10856-012-4822-0.
Article
CAS
Google Scholar
Jang HL, Jin K, Lee J, Kim Y, Nahm SH, Hong KS, et al. Revisiting whitlockite, the second most abundant biomineral in bone: nanocrystal synthesis in physiologically relevant conditions and biocompatibility evaluation. ACS Nano. 2014;8(1):634–41. https://doi.org/10.1021/nn405246h.
Article
CAS
Google Scholar
Kim D-H, Kim K-I, Yoon S, Kim H-J, Ahn J-S, Jun SH, et al. Dental hetero-graft materials with nano hydroxyapatite surface treatment. J Nanosci Nanotechnol. 2015;15(10):7942–9. https://doi.org/10.1166/jnn.2015.11197.
Article
CAS
Google Scholar
Biggemann J, Hoffmann P, Hristov I, Simon S, Müller P, Fey T. Injection molding of 3-3 hydroxyapatite composites. Materials. 2020;13(8):1907. https://doi.org/10.3390/ma13081907.
Article
CAS
Google Scholar
Biggemann J, Müller P, Köllner D, Simon S, Hoffmann P, Heik P, et al. Hierarchical surface texturing of hydroxyapatite ceramics: influence on the adhesive bonding strength of polymeric polycaprolactone. J Funct Biomater. 2020;11(4):73. https://doi.org/10.3390/jfb11040073.
Article
CAS
Google Scholar
Lee D, Wufuer M, Kim I, Choi TH, Kim BJ, Jung HG, et al. Sequential dual-drug delivery of BMP-2 and alendronate from hydroxyapatite-collagen scaffolds for enhanced bone regeneration. Sci Rep. 2021;11(1):746. https://doi.org/10.1038/s41598-020-80608-3.
Article
CAS
Google Scholar
Hong M-H, Kim S-M, Kim K-M, Lee Y-K. Development and in vitro assays of porous calcium polyphosphate granules. Ceram Int. 2013;39(5):4991–7. https://doi.org/10.1016/j.ceramint.2012.11.096.
Article
CAS
Google Scholar
Cheng H, Chabok R, Guan X, Chawla A, Li Y, Khademhosseini A, et al. Synergistic interplay between the two major bone minerals, hydroxyapatite and whitlockite nanoparticles, for osteogenic differentiation of mesenchymal stem cells. Acta Biomater. 2018;69:342–51. https://doi.org/10.1016/j.actbio.2018.01.016.
Article
CAS
Google Scholar
Sistanipour E, Meshkini A, Oveisi H. Catechin-conjugated mesoporous hydroxyapatite nanoparticle: a novel nano-antioxidant with enhanced osteogenic property. Colloids Surf B Biointerfaces. 2018;169:329–39. https://doi.org/10.1016/j.colsurfb.2018.05.046.
Article
CAS
Google Scholar
Salamanca E, Hsu C-C, Huang H-M, Teng N-C, Lin C-T, Pan Y-H, et al. Bone regeneration using a porcine bone substitute collagen composite in vitro and in vivo. Sci Rep. 2018;9(1):984. https://doi.org/10.1038/s41598-018-19629-y.
Article
CAS
Google Scholar
Lee JH, Bin LY, Rim NG, Jo SY, Lim YM, Shin H. Development and characterization of nanofibrous poly (lactic-co-glycolic acid)/biphasic calcium phosphate composite scaffolds for enhanced osteogenic differentiation. Macromol Res. 2011;19:172–9. https://doi.org/10.1007/s13233-011-0206-4.
Article
CAS
Google Scholar
Wang Z, Ma Y, Wei J, Chen X, Cao L, Weng W, et al. Effects of sintering temperature on surface morphology/microstructure, in vitro degradability, mineralization and osteoblast response to magnesium phosphate as biomedical material. Sci Rep. 2017;7(1):823. https://doi.org/10.1038/s41598-017-00905-2.
Article
CAS
Google Scholar
Choi S, Lee JS, Shin J, Lee MS, Kang D, Hwang NS, et al. Osteoconductive hybrid hyaluronic acid hydrogel patch for effective bone formation. J Control Release. 2020;327:571–83. https://doi.org/10.1016/j.jconrel.2020.09.006.
Article
CAS
Google Scholar
Kim DW, Cho I-S, Kim JY, Jang HL, Han GS, Ryu H-S, et al. Simple large-scale synthesis of hydroxyapatite nanoparticles: in situ observation of crystallization process. Langmuir. 2010;26(1):384–8. https://doi.org/10.1021/la902157z.
Article
CAS
Google Scholar
Zhou H, Lee J. Nanoscale hydroxyapatite particles for bone tissue engineering. Acta Biomater. 2011;7(7):2769–81. https://doi.org/10.1016/j.actbio.2011.03.019.
Article
CAS
Google Scholar
Han GS, Lee S, Kim DW, Kim DH, Noh JH, Park JH, et al. A simple method to control morphology of hydroxyapatite nano- and microcrystals by altering phase transition route. Cryst Growth Des. 2013;13(8):3414–8. https://doi.org/10.1021/cg400308a.
Article
CAS
Google Scholar
Hong MH, Kim SM, Han MH, Kim YH, Lee YK, Oh DS. Evaluation of microstructure effect of the porous spherical β-tricalcium phosphate granules on cellular responses. Ceram Int. 2014;40(4):6095–102. https://doi.org/10.1016/j.ceramint.2013.11.060.
Article
CAS
Google Scholar
Park SY, Kim K-I, Park SP, Lee JH, Jung HS. Aspartic acid-assisted synthesis of multifunctional strontium-substituted hydroxyapatite microspheres. Cryst Growth Des. 2016;16(8):4318–26. https://doi.org/10.1021/acs.cgd.6b00420.
Article
CAS
Google Scholar
Habibovic P, Sees TM, Van Den Doel MA, Van Blitterswijk CA, De Groot K. Osteoinduction by biomaterials–physicochemical and structural influences. J Biomed Mater Res. 2006;77(4):747–62. https://doi.org/10.1002/jbm.a.30712.
Article
CAS
Google Scholar
Dutta SR, Passi D, Singh P, Bhuibhar A. Ceramic and non-ceramic hydroxyapatite as a bone graft material: a brief review. Ir J Med Sci. 2015;184(1):101–6. https://doi.org/10.1007/s11845-014-1199-8.
Article
CAS
Google Scholar
Kattimani VS, Kondaka S, Lingamaneni KP. Hydroxyapatite–past, present, and future in bone regeneration. Bone Tissue Regen Insights. 2016;7:9–19. https://doi.org/10.4137/BTRI.S36138.
Article
Google Scholar
Wang H, Holmberg BA, Yan Y. Synthesis of template-free zeolite nanocrystals by using in situ thermoreversible polymer hydrogels. J Am Chem Soc. 2003;125(33):9928–9. https://doi.org/10.1021/ja036071q.
Article
CAS
Google Scholar
Wang X, Xu S, Zhou S, Xu W, Leary M, Choong P, et al. Topological design and additive manufacturing of porous metals for bone scaffolds and orthopaedic implants: a review. Biomaterials. 2016;83:127–41. https://doi.org/10.1016/j.biomaterials.2016.01.012.
Article
CAS
Google Scholar
Shi L, Chen K, Du R, Bachmatiuk A, Rümmeli MH, Xie K, et al. Scalable seashell-based chemical vapor deposition growth of three-dimensional graphene foams for oil-water separation. J Am Chem Soc. 2016;138(20):6360–3. https://doi.org/10.1021/jacs.6b02262.
Article
CAS
Google Scholar
Zhou K, Yu P, Shi X, Ling T, Zeng W, Chen A, et al. Hierarchically porous hydroxyapatite hybrid scaffold incorporated with reduced graphene oxide for rapid bone ingrowth and repair. ACS Nano. 2019;13(8):9595–606. https://doi.org/10.1021/acsnano.9b04723.
Article
CAS
Google Scholar
Crowder SW, Prasai D, Rath R, Balikov DA, Bae H, Bolotin KI, et al. Three-dimensional graphene foams promote osteogenic differentiation of human mesenchymal stem cells. Nanoscale. 2013;5(10):4171–6. https://doi.org/10.1039/c3nr00803g.
Article
CAS
Google Scholar
Di Luca A, Ostrowska B, Lorenzo-Moldero I, Lepedda A, Swieszkowski W, Van Blitterswijk C, et al. Gradients in pore size enhance the osteogenic differentiation of human mesenchymal stromal cells in three-dimensional scaffolds. Sci Rep. 2016;6(1):22898. https://doi.org/10.1038/srep22898.
Article
CAS
Google Scholar
Yuan H, Kurashina K, De Bruijn JD, Li Y, De Groot K, Zhang X. A preliminary study on osteoinduction of two kinds of calcium phosphate ceramics. Biomaterials. 1999;20:1799–1806. https://doi.org/10.1016/s0142-9612(99)00075-7, 19.
Schlipf DM, Rankin SE, Knutson BL. Pore-size dependent protein adsorption and protection from proteolytic hydrolysis in tailored mesoporous silica particles. ACS Appl Mater Interfaces. 2013;5(20):10111–7. https://doi.org/10.1021/am402754h.
Article
CAS
Google Scholar
Niu L-N, Jee SE, Jiao K, Tonggu L, Li M, Wang L, et al. Collagen intrafibrillar mineralization as a result of the balance between osmotic equilibrium and electroneutrality. Nat Mater. 2017;16(3):370–8. https://doi.org/10.1038/nmat4789.
Article
CAS
Google Scholar
Chen Z, Ni S, Han S, Crawford R, Lu S, Wei F, et al. Nanoporous microstructures mediate osteogenesis by modulating the osteo-immune response of macrophages. Nanoscale. 2017;9(2):706–18. https://doi.org/10.1039/C6NR06421C.
Article
CAS
Google Scholar
Choi Y, Jeong JH, Kim J. Mechanically enhanced hierarchically porous scaffold composed of mesoporous silica for host immune cell recruitment. Adv Healthc Mater. 2017;6(8):1601160. https://doi.org/10.1002/adhm.201601160.
Article
CAS
Google Scholar
Park J-H, Kim M-K, El-Fiqi A, Seo S-J, Lee E-J, Kim J-H, et al. Bioactive and porous-structured nanocomposite microspheres effective for cell delivery: a feasibility study for bone tissue engineering. RSC Adv. 2014;4(55):29062–71. https://doi.org/10.1039/C4RA02199A.
Article
CAS
Google Scholar
Samadian H, Farzamfar S, Vaez A, Ehterami A, Bit A, Alam M, et al. A tailored polylactic acid/polycaprolactone biodegradable and bioactive 3D porous scaffold containing gelatin nanofibers and taurine for bone regeneration. Sci Rep. 2020;10(1):13366. https://doi.org/10.1038/s41598-020-70155-2.
Article
CAS
Google Scholar
Mbarki M, Sharrock P, Fiallo M, ElFeki H. Hydroxyapatite bioceramic with large porosity. Mater Sci Eng C. 2017;76:985–90. https://doi.org/10.1016/j.msec.2017.03.097.
Article
CAS
Google Scholar
Ozturk BY, Inci I, Egri S, Ozturk AM, Yetkin H, Goktas G, et al. The treatment of segmental bone defects in rabbit tibiae with vascular endothelial growth factor (VEGF)-loaded gelatin/hydroxyapatite “cryogel” scaffold. Eur J Orthop Surg Traumatol. 2013;23(7):767–74. https://doi.org/10.1007/s00590-012-1070-4.
Article
Google Scholar
Ko E, Alberti K, Lee JS, Yang K, Jin Y, Shin J, et al. Nanostructured tendon-derived scaffolds for enhanced bone regeneration by human adipose-derived stem cells. ACS Appl Mater Interfaces. 2016;8(35):22819–29. https://doi.org/10.1021/acsami.6b05358.
Article
CAS
Google Scholar
Jang Y-H, Jin X, Shankar P, Lee JH, Jo K, Lim K-I. Molecular-level interactions between engineered materials and cells. Int J Mol Sci. 2019;20(17):4142. https://doi.org/10.3390/ijms20174142.
Article
CAS
Google Scholar
Lee E-S, Park J, Wang J, Lee H, Hwang NS. Osteogenic commitment of human induced pluripotent stem cell-derived mesenchymal progenitor-like cells on biomimetic scaffolds. J Ind Eng Chem. 2016;37:147–55. https://doi.org/10.1016/j.jiec.2016.03.017.
Article
CAS
Google Scholar
Udomluck N, Lee H, Hong S, Lee S-H, Park H. Surface functionalization of dual growth factor on hydroxyapatite-coated nanofibers for bone tissue engineering. Appl Surf Sci. 2020;520:146311. https://doi.org/10.1016/j.apsusc.2020.146311.
Article
CAS
Google Scholar
Lopez-Berganza JA, Fu B, Lee C-WJ, Rogers SA, Espinosa-Marzal RM. Mediating the enhanced interaction between hydroxyapatite and agarose through amorphous calcium carbonate. Cryst Growth Des. 2020;20(10):6917–29. https://doi.org/10.1021/acs.cgd.0c00975.
Article
CAS
Google Scholar
Kawanobe Y, Honda M, Konishi T, Mizumoto M, Habuto Y, Kanzawa N, et al. Preparation of apatite microsphere with nano-size pores on the surface via salt-assisted ultrasonic spray-pyrolysis technique and its drug release behavior. J Aust Ceram Soc. 2011;47:6–10.
CAS
Google Scholar
Ramli RA, Adnan R, Bakar MA, Masudi SM. Synthesis and characterisation of pure nanoporous hydroxyapatite. J Phys Ther Sci. 2011;22:22–37.
Google Scholar
Hatakeyama W, Taira M, Chosa N, Kihara H, Ishisaki A, Kondo H. Effects of apatite particle size in two apatite/collagen composites on the osteogenic differentiation profile of osteoblastic cells. Int J Mol Med. 2013;32(6):1255–61. https://doi.org/10.3892/ijmm.2013.1516.
Article
CAS
Google Scholar
Cantaert B, Beniash E, Meldrum FC. Nanoscale confinement controls the crystallization of calcium phosphate: relevance to bone formation. Chem Eur J. 2013;19(44):14918–24. https://doi.org/10.1002/chem.201302835.
Article
CAS
Google Scholar
Venkatesan J, Kim S-K. Nano-hydroxyapatite composite biomaterials for bone tissue engineering–a review. J Biomed Nanotechnol. 2014;10(10):3124–40. https://doi.org/10.1166/jbn.2014.1893.
Article
CAS
Google Scholar
Tang W, Lin D, Yu Y, Niu H, Guo H, Yuan Y, et al. Bioinspired trimodal macro/micro/nano-porous scaffolds loading rhBMP-2 for complete regeneration of critical size bone defect. Acta Biomater. 2016;32:309–23. https://doi.org/10.1016/j.actbio.2015.12.006.
Article
CAS
Google Scholar
Hayashi K, Ishikawa K. Effects of nanopores on the mechanical strength, osteoclastogenesis, and osteogenesis in honeycomb scaffolds. J Mater Chem B. 2020;8(37):8536–45. https://doi.org/10.1039/D0TB01498B.
Article
CAS
Google Scholar
Muralithran G, Ramesh S. The effects of sintering temperature on the properties of hydroxyapatite. Ceram Int 2000;26:221–230. https://doi.org/10.1016/S0272-8842(99)00046-2, 2.
Kravchenko VB, Kopylov YL, Kotel'nikove VA. Handbook of solid-state lasers, section 3. Woodhead Publishing. 2013. https://doi.org/10.1533/9780857097507.1.54.
Greiner JFW, Gottschalk M, Fokin N, Büker B, Kaltschmidt BP, Dreyer A, et al. Natural and synthetic nanopores directing osteogenic differentiation of human stem cells. Nanomedicine. 2019;17:319–28. https://doi.org/10.1016/j.nano.2019.01.018.
Article
CAS
Google Scholar
Alexander B, Daulton TL, Genin GM, Lipner J, Pasteris J, Wopenka B, et al. J R Soc Interface. The nanometre-scale physiology of bone: steric modelling and scanning transmission electron microscopy of collagen–mineral structure. 2012;9(73):1774–86. https://doi.org/10.1098/rsif.2011.0880.
Article
CAS
Google Scholar
Yang K, Han S, Shin Y, Ko E, Kim J, Park KI, et al. A microfluidic array for quantitative analysis of human neural stem cell self-renewal and differentiation in three-dimensional hypoxic microenvironment. Biomaterials. 2013;34(28):6607–14. https://doi.org/10.1016/j.biomaterials.2013.05.067.
Article
CAS
Google Scholar
Lee JW, Chae S, Oh S, Kim SH, Choi KH, Meeseepong M, et al. Single-chain atomic crystals as extracellular matrix-mimicking material with exceptional biocompatibility and bioactivity. Nano Lett. 2018;18(12):7619–27. https://doi.org/10.1021/acs.nanolett.8b03201.
Article
CAS
Google Scholar
Chiu C-H, Tong Y-W, Yu J-F, Lei KF, Chen AC-Y. Osteogenesis and chondrogenesis of primary rabbit periosteal cells under non-uniform 2-axial tensile strain. Biochip J. 2020;14(4):438–46. https://doi.org/10.1007/s13206-020-4408-8.
Article
CAS
Google Scholar
Lee JW, Chae S, Oh S, Kim SH, Meeseepong M, Choi KH, et al. Bio-essential inorganic molecular nanowires as a bioactive muscle extracellular-matrix-mimicking material. ACS Appl Mater Interfaces. 2021;13(33):39135–41. https://doi.org/10.1021/acsami.1c12440.
Article
CAS
Google Scholar
Kim SH, Oh S, Chae S, Lee JW, Choi KH, Lee KE, et al. Exceptional mechanical properties of phase-separation-free Mo3Se3−-chain-reinforced hydrogel prepared by polymer wrapping process. Nano Lett. 2019;19(8):5717–24. https://doi.org/10.1021/acs.nanolett.9b02343.
Article
CAS
Google Scholar
Meejoo S, Maneeprakorn W, Winotai P. Phase and thermal stability of nanocrystalline hydroxyapatite prepared via microwave heating. Thermochim Acta. 2006;447(1):115–20. https://doi.org/10.1016/j.tca.2006.04.013.
Article
CAS
Google Scholar
Wei J, He P, Liu A, Chen X, Wang X, Jing X. Surface modification of hydroxyapatite nanoparticles with thermal-responsive PNIPAM by ATRP. Macromol Biosci. 2009;9(12):1237–46. https://doi.org/10.1002/mabi.200900256.
Article
CAS
Google Scholar
Wu T, Tan L, Cheng N, Yan Q, Zhang YF, Liu CJ, et al. PNIPAAM modified mesoporous hydroxyapatite for sustained osteogenic drug release and promoting cell attachment. Mater Sci Eng C. 2016;62:888–96. https://doi.org/10.1016/j.msec.2016.01.012.
Article
CAS
Google Scholar
Fang M, Holl MMB. Variation in type I collagen fibril nanomorphology: the significance and origin. Bonekey Rep. 2013;2:394. https://doi.org/10.1038/bonekey.2013.128.
Article
CAS
Google Scholar
Jung HG, Lee D, Lee SW, Kim I, Kim Y, Jang JW, et al. Nanoindentation for monitoring the time-variant mechanical strength of drug-loaded collagen hydrogel regulated by hydroxyapatite nanoparticles. ACS Omega. 2021;6(13):9269–78. https://doi.org/10.1021/acsomega.1c00824.
Article
CAS
Google Scholar
Lee JTY, Chow KL, Wang K, Tsang W-H. Is macroporosity absolutely required for preliminary in vitro bone biomaterial study? A comparison between porous materials and flat materials. J Funct Biomater. 2011;2(4):308–37. https://doi.org/10.3390/jfb2040308.
Article
CAS
Google Scholar
Liu Y, Huang J, Li H. Synthesis of hydroxyapatite-reduced graphite oxide nanocomposites for biomedical applications: oriented nucleation and epitaxial growth of hydroxyapatite. J Mater Chem B. 2013;1(13):1826–34. https://doi.org/10.1039/c3tb00531c.
Article
CAS
Google Scholar
Fiocco L, Elsayed H, Ferroni L, Gardin C, Zavan B, Bernardo E. Bioactive wollastonite-diopside foams from preceramic polymers and reactive oxide fillers. Materials. 2015;8(5):2480–94. https://doi.org/10.3390/ma8052480.
Article
CAS
Google Scholar
Smith IO, McCabe LR, Baumann MJ. MC3T3-E1 osteoblast attachment and proliferation on porous hydroxyapatite scaffolds fabricated with nanophase powder. Int J Nanomedicine. 2006;1(2):189–94. https://doi.org/10.2147/nano.2006.1.2.189.
Article
CAS
Google Scholar
Li LH, Kommareddy KP, Pilz C, Zhou CR, Fratzl P, Manjubala I. In vitro bioactivity of bioresorbable porous polymeric scaffolds incorporating hydroxyapatite microspheres. Acta Biomater. 2010;6(7):2525–31. https://doi.org/10.1016/j.actbio.2009.03.028.
Article
CAS
Google Scholar
Laranjeira MS, Fernandes MH, Monteiro FJ. Innovative macroporous granules of nanostructured-hydroxyapatite agglomerates: bioactivity and osteoblast-like cell behaviour. J Biomed Mater Res A. 2010;95(3):891–900. https://doi.org/10.1002/jbm.a.32916.
Article
CAS
Google Scholar
Jang HL, Lee K, Kang CS, Lee HK, Ahn H-Y, Jeong H-Y, et al. Biofunctionalized ceramic with self-assembled networks of nanochannels. ACS Nano. 2015;9(4):4447–57. https://doi.org/10.1021/acsnano.5b01052.
Article
CAS
Google Scholar
Abdullah FI, Chua LS, Rahmat Z, Soontorngun N, Somboon P. Trypsin hydrolysed protein fractions as radical scavengers and anti-bacterial agents from Ficus deltoidea. Int J Pept Res Ther. 2018;24(2):279–90. https://doi.org/10.1007/s10989-017-9613-5.
Article
CAS
Google Scholar
Levi V, González Flecha FL. Reversible fast-dimerization of bovine serum albumin detected by fluorescence resonance energy transfer. Biochim Biophys Acta 2002;1599:141–148. https://doi.org/10.1016/S1570-9639(02)00414-4, 1-2.
Atmeh RF, Arafa IM, Alkhatib MA. Albumin aggregates: hydrodynamic shape and physico-chemical properties. Jordan J Chem. 2007;2:169–82.
CAS
Google Scholar
Babcock JJ, Brancaleon L. Bovine serum albumin oligomers in the E- and B-forms at low protein concentration and ionic strength. Int J Biol Macromol. 2013;53:42–53. https://doi.org/10.1016/j.ijbiomac.2012.10.030.
Article
CAS
Google Scholar
Yamada S, Heymann D, Bouler JM, Daculsi G. Osteoclastic resorption of calcium phosphate ceramics with different hydroxyapatite/beta-tricalcium phosphate ratios. Biomaterials. 1997;18:1037–1041. https://doi.org/10.1016/s0142-9612(97)00036-7, 15.
Rojbani H, Nyan M, Ohya K, Kasugai S. Evaluation of the osteoconductivity of α-tricalcium phosphate, β-tricalcium phosphate, and hydroxyapatite combined with or without simvastatin in rat calvarial defect. J Biomed Mater Res A. 2011;98(4):488–98. https://doi.org/10.1002/jbm.a.33117.
Article
CAS
Google Scholar
Kokubo T, Takadama H. How useful is SBF in predicting in vivo bone bioactivity? Biomaterials. 2006;27(15):2907–15. https://doi.org/10.1016/j.biomaterials.2006.01.017.
Article
CAS
Google Scholar