Medina KL. In: Pittock SJ, Vincent A, editors. Chapter 4 - Overview of the immune system, in Handbook of Clinical Neurology. Amsterdam: Elsevier; 2016. p. 61–76.
Vigano S, et al. Positive and negative regulation of cellular immune responses in physiologic conditions and diseases. Clin Dev Immunol. 2012;2012:485781.
CAS
Google Scholar
Hansson GK, Hermansson A. The immune system in atherosclerosis. Nat Immunol. 2011;12(3):204–12. https://doi.org/10.1038/ni.2001.
Article
CAS
Google Scholar
Abboud FM, Harwani SC, Chapleau MW. Autonomic neural regulation of the immune system. Hypertension. 2012;59(4):755–62. https://doi.org/10.1161/HYPERTENSIONAHA.111.186833.
Article
CAS
Google Scholar
Pandya PH, et al. The immune system in Cancer pathogenesis: potential therapeutic approaches. J Immunol Res. 2016;2016:4273943.
Article
Google Scholar
Topalian SL, Hodi FS, Brahmer JR, Gettinger SN, Smith DC, McDermott DF, et al. Safety, activity, and immune correlates of anti–PD-1 antibody in Cancer. N Engl J Med. 2012;366(26):2443–54. https://doi.org/10.1056/NEJMoa1200690.
Article
CAS
Google Scholar
Zang X, Cheng M, Zhang X, Chen X. Targeting macrophages using nanoparticles: a potential therapeutic strategy for atherosclerosis. J Mater Chem B. 2021;9(15):3284–94. https://doi.org/10.1039/D0TB02956D.
Article
CAS
Google Scholar
Oroojalian F, Charbgoo F, Hashemi M, Amani A, Yazdian-Robati R, Mokhtarzadeh A, et al. Recent advances in nanotechnology-based drug delivery systems for the kidney. J Control Release. 2020;321:442–62. https://doi.org/10.1016/j.jconrel.2020.02.027.
Article
CAS
Google Scholar
Papadopoulos AN, Bikiaris DN, Mitropoulos AC, Kyzas GZ. Nanomaterials and Chemical Modifications for Enhanced Key Wood Properties: A Review. Nanomaterials (Basel). 2019;9(4). https://doi.org/10.3390/nano9040607.
Bidwell III GL, et al. A kidney-selective biopolymer for targeted drug delivery. Am J Physiol-Renal Physiol. 2017;312(1):F54–64. https://doi.org/10.1152/ajprenal.00143.2016.
Article
CAS
Google Scholar
Zhang J, Saltzman M. Engineering biodegradable nanoparticles for drug and gene delivery. Chem Eng Prog. 2013;109(3):25–30.
CAS
Google Scholar
Mitchell MJ, Billingsley MM, Haley RM, Wechsler ME, Peppas NA, Langer R. Engineering precision nanoparticles for drug delivery. Nat Rev Drug Discov. 2021;20(2):101–24. https://doi.org/10.1038/s41573-020-0090-8.
Article
CAS
Google Scholar
Conniot J, et al. Cancer immunotherapy: nanodelivery approaches for immune cell targeting and tracking. Front Chem. 2014;2(105). https://doi.org/10.3389/fchem.2014.00105.
Vanneman M, Dranoff G. Combining immunotherapy and targeted therapies in cancer treatment. Nat Rev Cancer. 2012;12(4):237–51. https://doi.org/10.1038/nrc3237.
Article
CAS
Google Scholar
Budd RC, Fortner KA. In: Firestein GS, et al., editors. 13 - T Lymphocytes, in Kelley's Textbook of Rheumatology. Ninth ed. Philadelphia: W.B. Saunders; 2013. p. 174–90.
Chapter
Google Scholar
Golubovskaya V, Wu L. Different subsets of T cells, memory, effector functions, and CAR-T immunotherapy. Cancers. 2016;8(3):36. https://doi.org/10.3390/cancers8030036.
Article
CAS
Google Scholar
Weigelin B, den Boer AT, Wagena E, Broen K, Dolstra H, de Boer RJ, et al. Cytotoxic T cells are able to efficiently eliminate cancer cells by additive cytotoxicity. Nat Commun. 2021;12(1):5217. https://doi.org/10.1038/s41467-021-25282-3.
Article
CAS
Google Scholar
Swain SL, McKinstry KK, Strutt TM. Expanding roles for CD4+ T cells in immunity to viruses. Nat Rev Immunol. 2012;12(2):136–48. https://doi.org/10.1038/nri3152.
Article
CAS
Google Scholar
Zheng Y, Tang L, Mabardi L, Kumari S, Irvine DJ. Enhancing adoptive cell therapy of Cancer through targeted delivery of small-molecule Immunomodulators to internalizing or noninternalizing receptors. ACS Nano. 2017;11(3):3089–100. https://doi.org/10.1021/acsnano.7b00078.
Article
CAS
Google Scholar
Ramishetti S, Kedmi R, Goldsmith M, Leonard F, Sprague AG, Godin B, et al. Systemic gene silencing in primary T lymphocytes using targeted lipid nanoparticles. ACS Nano. 2015;9(7):6706–16. https://doi.org/10.1021/acsnano.5b02796.
Article
CAS
Google Scholar
Lee J, Yun KS, Choi CS, Shin SH, Ban HS, Rhim T, et al. T cell-specific siRNA delivery using antibody-conjugated chitosan nanoparticles. Bioconjug Chem. 2012;23(6):1174–80. https://doi.org/10.1021/bc2006219.
Article
CAS
Google Scholar
Smith TT, Stephan SB, Moffett HF, McKnight LE, Ji W, Reiman D, et al. In situ programming of leukaemia-specific T cells using synthetic DNA nanocarriers. Nat Nanotechnol. 2017;12(8):813–20. https://doi.org/10.1038/nnano.2017.57.
Article
CAS
Google Scholar
Gil-Garcia M, Ventura S. Multifunctional antibody-conjugated coiled-coil protein nanoparticles for selective cell targeting. Acta Biomater. 2021;131:7454–82. https://doi.org/10.1016/j.actbio.2021.06.040.
Article
CAS
Google Scholar
Mi Y, Smith CC, Yang F, Qi Y, Roche KC, Serody JS, et al. A dual immunotherapy nanoparticle improves T-cell activation and Cancer immunotherapy. Adv Mater. 2018;30(25):e1706098. https://doi.org/10.1002/adma.201706098.
Article
CAS
Google Scholar
Kovochich M, Marsden MD, Zack JA. Activation of latent HIV using drug-loaded nanoparticles. PLoS One. 2011;6(4):e18270. https://doi.org/10.1371/journal.pone.0018270.
Article
CAS
Google Scholar
Delgoffe GM, Woo SR, Turnis ME, Gravano DM, Guy C, Overacre AE, et al. Stability and function of regulatory T cells is maintained by a neuropilin-1–semaphorin-4a axis. Nature. 2013;501(7466):252–6. https://doi.org/10.1038/nature12428.
Article
CAS
Google Scholar
Ou W, Thapa RK, Jiang L, Soe ZC, Gautam M, Chang JH, et al. Regulatory T cell-targeted hybrid nanoparticles combined with immuno-checkpoint blockage for cancer immunotherapy. J Control Release. 2018;281:84–96. https://doi.org/10.1016/j.jconrel.2018.05.018.
Article
CAS
Google Scholar
Yang YS, Moynihan KD, Bekdemir A, Dichwalkar TM, Noh MM, Watson N, et al. Targeting small molecule drugs to T cells with antibody-directed cell-penetrating gold nanoparticles. Biomater Sci. 2018;7(1):113–24. https://doi.org/10.1039/c8bm01208c.
Article
CAS
Google Scholar
Xie Y, Kim NH, Nadithe V, Schalk D, Thakur A, Kılıç A, et al. Targeted delivery of siRNA to activated T cells via transferrin-polyethylenimine (Tf-PEI) as a potential therapy of asthma. J Control Release. 2016;229:120–9. https://doi.org/10.1016/j.jconrel.2016.03.029.
Article
CAS
Google Scholar
Ong SM, Teng K, Newell E, Chen H, Chen J, Loy T, et al. A novel, five-marker alternative to CD16-CD14 gating to identify the three human monocyte subsets. Front Immunol. 2019;10:1761. https://doi.org/10.3389/fimmu.2019.01761.
Article
CAS
Google Scholar
Lee SH, Park OK, Kim J, Shin K, Pack CG, Kim K, et al. Deep tumor penetration of drug-loaded nanoparticles by click reaction-assisted immune cell targeting strategy. J Am Chem Soc. 2019;141(35):13829–40. https://doi.org/10.1021/jacs.9b04621.
Article
CAS
Google Scholar
Brown GD, Gordon S. A new receptor for β-glucans. Nature. 2001;413(6851):36–7. https://doi.org/10.1038/35092620.
Article
CAS
Google Scholar
Taylor PR, Martinez-Pomares L, Stacey M, Lin HH, Brown GD, Gordon S. Macrophage receptors and immune recognition. Annu Rev Immunol. 2005;23(1):901–44. https://doi.org/10.1146/annurev.immunol.23.021704.115816.
Article
CAS
Google Scholar
Ren T, Zheng X, Bai R, Yang Y, Jian L. Utilization of PLGA nanoparticles in yeast cell wall particle system for oral targeted delivery of exenatide to improve its hypoglycemic efficacy. Int J Pharm. 2021;601:120583. https://doi.org/10.1016/j.ijpharm.2021.120583.
Article
CAS
Google Scholar
Reddy JA, Haneline LS, Srour EF, Antony AC, Clapp DW, Low PS. Expression and functional characterization of the β-isoform of the folate receptor on CD34+ cells. Blood. 1999;93(11):3940–8. https://doi.org/10.1182/blood.V93.11.3940.
Article
CAS
Google Scholar
Poh S, Putt KS, Low PS. Folate-targeted dendrimers selectively accumulate at sites of inflammation in mouse models of ulcerative colitis and atherosclerosis. Biomacromolecules. 2017;18(10):3082–8. https://doi.org/10.1021/acs.biomac.7b00728.
Article
CAS
Google Scholar
Yang Y, Guo L, Wang Z, Liu P, Liu X, Ding J, et al. Targeted silver nanoparticles for rheumatoid arthritis therapy via macrophage apoptosis and re-polarization. Biomaterials. 2021;264:120390. https://doi.org/10.1016/j.biomaterials.2020.120390.
Article
CAS
Google Scholar
Taylor ME. In: Crocker PR, editor. Structure and Function of the Macrophage Mannose Receptor, in Mammalian Carbohydrate Recognition Systems. Berlin: Springer Berlin Heidelberg; 2001. p. 105–21.
Chapter
Google Scholar
Cutler AJ, Davies KA. Antigen Clearance. In: Delves PJ, editor. Encyclopedia of Immunology. Second ed. Oxford: Elsevier; 1998. p. 182–8. https://doi.org/10.1006/rwei.1999.0050.
Chapter
Google Scholar
Sun Q, Arif M, Chi Z, Li G, Liu CG. Macrophages-targeting mannosylated nanoparticles based on inulin for the treatment of inflammatory bowel disease (IBD). Int J Biol Macromol. 2021;169:206–15. https://doi.org/10.1016/j.ijbiomac.2020.12.094.
Article
CAS
Google Scholar
He H, Yuan Q, Bie J, Wallace RL, Yannie PJ, Wang J, et al. Development of mannose functionalized dendrimeric nanoparticles for targeted delivery to macrophages: use of this platform to modulate atherosclerosis. Transl Res. 2018;193:13–30. https://doi.org/10.1016/j.trsl.2017.10.008.
Article
CAS
Google Scholar
Liang D-S, Wen ZJ, Wang JH, Zhu FF, Guo F, Zhou JL, et al. Legumain protease-sheddable PEGylated, tuftsin-modified nanoparticles for selective targeting to tumor-associated macrophages. J Drug Target. 2021:1–25. https://doi.org/10.1080/1061186X.2021.1906886.
Lin Y, Wei C, Liu Y, Qiu Y, Liu C, Guo F. Selective ablation of tumor-associated macrophages suppresses metastasis and angiogenesis. Cancer Sci. 2013;104(9):1217–25. https://doi.org/10.1111/cas.12202.
Article
CAS
Google Scholar
Najjar VA. Tuftsin, a natural activator of phagocyte cells: an Overviewa. Ann N Y Acad Sci. 1983;419(1):1–11. https://doi.org/10.1111/j.1749-6632.1983.tb37086.x.
Article
CAS
Google Scholar
Deng C, Zhang Q, He P, Zhou B, He K, Sun X, et al. Targeted apoptosis of macrophages and osteoclasts in arthritic joints is effective against advanced inflammatory arthritis. Nat Commun. 2021;12(1):2174. https://doi.org/10.1038/s41467-021-22454-z.
Article
CAS
Google Scholar
Han S, Wang W, Wang S, Yang T, Zhang G, Wang D, et al. Tumor microenvironment remodeling and tumor therapy based on M2-like tumor associated macrophage-targeting nano-complexes. Theranostics. 2021;11(6):2892–916. https://doi.org/10.7150/thno.50928.
Article
CAS
Google Scholar
Pustylnikov S, Sagar D, Jain P, Khan ZK. Targeting the C-type lectins-mediated host-pathogen interactions with dextran. J Pharm Pharm Sci. 2014;17(3):371–92. https://doi.org/10.18433/J3N590.
Article
Google Scholar
Moku G, Vangala S, Gulla SK, Yakati V. In vivo targeting of DNA vaccines to dendritic cells via the mannose receptor induces long-lasting immunity against melanoma. Chembiochem. 2021;22(3):523–31. https://doi.org/10.1002/cbic.202000364.
Article
CAS
Google Scholar
Huang J, Liu H, Wang M, Bai X, Cao J, Zhang Z, et al. Mannosylated gelatin nanoparticles enhanced inactivated PRRSV targeting dendritic cells and increased T cell immunity. Vet Immunol Immunopathol. 2021;235:110237. https://doi.org/10.1016/j.vetimm.2021.110237.
Article
CAS
Google Scholar
Pei M, Xu R, Zhang C, Wang X, Li C, Hu Y. Mannose-functionalized antigen nanoparticles for targeted dendritic cells, accelerated endosomal escape and enhanced MHC-I antigen presentation. Colloids Surf B Biointerfaces. 2021;197:111378. https://doi.org/10.1016/j.colsurfb.2020.111378.
Article
CAS
Google Scholar
El-Sayed N, et al. Functionalized multifunctional nanovaccine for targeting dendritic cells and modulation of immune response. Int J Pharm. 2021;593:120123. https://doi.org/10.1016/j.ijpharm.2020.120123.
Article
CAS
Google Scholar
Stead SO, Kireta S, McInnes SJP, Kette FD, Sivanathan KN, Kim J, et al. Murine and non-human primate dendritic cell targeting nanoparticles for in vivo generation of regulatory T-cells. ACS Nano. 2018;12(7):6637–47. https://doi.org/10.1021/acsnano.8b01625.
Article
CAS
Google Scholar
Astorga-Gamaza A, Vitali M, Borrajo ML, Suárez-López R, Jaime C, Bastus N, et al. Antibody cooperative adsorption onto AuNPs and its exploitation to force natural killer cells to kill HIV-infected T cells. Nano Today. 2021;36:101056. https://doi.org/10.1016/j.nantod.2020.101056.
Article
CAS
Google Scholar
Vij N, Min T, Bodas M, Gorde A, Roy I. Neutrophil targeted nano-drug delivery system for chronic obstructive lung diseases. Nanomedicine. 2016;12(8):2415–27. https://doi.org/10.1016/j.nano.2016.06.008.
Article
CAS
Google Scholar
Au KM, Park SI, Wang AZ. Trispecific natural killer cell nanoengagers for targeted chemoimmunotherapy. Sci Adv. 2020;6(27):eaba8564.
Article
CAS
Google Scholar
Chandrasekaran S, Chan MF, Li J, King MR. Super natural killer cells that target metastases in the tumor draining lymph nodes. Biomaterials. 2016;77:66–76. https://doi.org/10.1016/j.biomaterials.2015.11.001.
Article
CAS
Google Scholar
Adjei IM, Jordan J, Tu N, Trinh TL, Kandell W, Wei S, et al. Functional recovery of natural killer cell activity by nanoparticle-mediated delivery of transforming growth factor beta 2 small interfering RNA. J Interdiscip Nanomed. 2019;4(4):98–112. https://doi.org/10.1002/jin2.63.
Article
CAS
Google Scholar
Adjei IM, Sharma B, Labhasetwar V. Nanoparticles: cellular uptake and cytotoxicity. Nanomaterial. 2014:73–91. https://doi.org/10.1007/978-94-017-8739-0_5.
Jacobs L, Nawrot TS, de Geus B, Meeusen R, Degraeuwe B, Bernard A, et al. Subclinical responses in healthy cyclists briefly exposed to traffic-related air pollution: an intervention study. Environ Health. 2010;9(1):64. https://doi.org/10.1186/1476-069X-9-64.
Article
CAS
Google Scholar
De Larco JE, Wuertz BRK, Furcht LT. The potential role of neutrophils in promoting the metastatic phenotype of tumors releasing Interleukin-8. Clin Cancer Res. 2004;10(15):4895–900. https://doi.org/10.1158/1078-0432.CCR-03-0760.
Article
Google Scholar
Kawabata K, Hagio T, Matsuoka S. The role of neutrophil elastase in acute lung injury. Eur J Pharmacol. 2002;451(1):1–10. https://doi.org/10.1016/S0014-2999(02)02182-9.
Article
CAS
Google Scholar
Hoenderdos K, Condliffe A. The neutrophil in chronic obstructive pulmonary disease. Too little, too late or too much, too soon? Am J Respir Cell Mol Biol. 2013;48(5):531–9. https://doi.org/10.1165/rcmb.2012-0492TR.
Article
CAS
Google Scholar
Mejias JC, et al. Neutrophil-targeted, protease-activated pulmonary drug delivery blocks airway and systemic inflammation. JCI Insight. 2019;4(23). https://doi.org/10.1172/jci.insight.131468.
Tang L, Wang Z, Mu Q, Yu Z, Jacobson O, Li L, et al. Targeting neutrophils for enhanced Cancer Theranostics. Adv Mater. 2020;32(33):e2002739. https://doi.org/10.1002/adma.202002739.
Article
CAS
Google Scholar
Wang Z, Li J, Cho J, Malik AB. Prevention of vascular inflammation by nanoparticle targeting of adherent neutrophils. Nat Nanotechnol. 2014;9(3):204–10. https://doi.org/10.1038/nnano.2014.17.
Article
CAS
Google Scholar
Stroncek DF. Neutrophil-specific antigen HNA-2a, NB1 glycoprotein, and CD177. Curr Opin Hematol. 2007;14(6):–693. https://doi.org/10.1097/MOH.0b013e3282efed9e.
Bauer S, Abdgawad M, Gunnarsson L, Segelmark M, Tapper H, Hellmark T. Proteinase 3 and CD177 are expressed on the plasma membrane of the same subset of neutrophils. J Leukoc Biol. 2007;81(2):458–64. https://doi.org/10.1189/jlb.0806514.
Article
CAS
Google Scholar
Sachs UJH, Andrei-Selmer CL, Maniar A, Weiss T, Paddock C, Orlova VV, et al. The neutrophil-specific antigen CD177 is a counter-receptor for platelet endothelial cell adhesion Molecule-1 (CD31)*. J Biol Chem. 2007;282(32):23603–12. https://doi.org/10.1074/jbc.M701120200.
Article
CAS
Google Scholar
Xie Q, Klesney-Tait J, Keck K, Parlet C, Borcherding N, Kolb R, et al. Characterization of a novel mouse model with genetic deletion of CD177. Protein Cell. 2015;6(2):117–26. https://doi.org/10.1007/s13238-014-0109-1.
Article
CAS
Google Scholar
Göhring K, Wolff J, Doppl W, Schmidt KL, Fenchel K, Pralle H, et al. Neutrophil CD177 (NB1 gp, HNA-2a) expression is increased in severe bacterial infections and polycythaemia vera. Br J Haematol. 2004;126(2):252–4. https://doi.org/10.1111/j.1365-2141.2004.05027.x.
Article
CAS
Google Scholar
Miettinen HM, Gripentrog JM, Lord CI, Nagy JO. CD177-mediated nanoparticle targeting of human and mouse neutrophils. PLoS One. 2018;13(7):e0200444. https://doi.org/10.1371/journal.pone.0200444.
Article
CAS
Google Scholar
Rose S, Misharin A, Perlman H. A novel Ly6C/Ly6G-based strategy to analyze the mouse splenic myeloid compartment. Cytometry Part A. 2012;81A(4):343–50. https://doi.org/10.1002/cyto.a.22012.
Article
CAS
Google Scholar
Källberg E, Stenström M, Liberg D, Ivars F, Leanderson T. CD11b+Ly6C++Ly6G- cells show distinct function in mice with chronic inflammation or tumor burden. BMC Immunol. 2012;13(1):69. https://doi.org/10.1186/1471-2172-13-69.
Article
CAS
Google Scholar