Kasraei S, Sami L, Hendi S, AliKhani MY, Rezaei-Soufi L, Khamverdi Z. Antibacterial properties of composite resins incorporating silver and zinc oxide nanoparticles on Streptococcus mutans and Lactobacillus. Restorative Dent Endod. 2014;39(2):109–14.
Article
Google Scholar
Fernandes GL, Delbem AC, Do Amaral JG, Gorup LF, Fernandes RA, de Souza Neto FN, Souza JA, Monteiro DR, Hunt AM, Camargo ER, Barbosa DB. Nanosynthesis of silver-calcium glycerophosphate: promising association against oral pathogens. Antibiotics. 2018;7(3):52.
Article
CAS
Google Scholar
Saafan A, Zaazou MH, Sallam MK, Mosallam O, El Danaf HA. Assessment of photodynamic therapy and nanoparticles effects on caries models. Open Access Macedonian J Med Sci. 2018;6(7):1289.
Article
Google Scholar
Cao W, Zhang Y, Wang X, Chen Y, Li Q, Xing X, Xiao Y, Peng X, Ye Z. Development of a novel resin-based dental material with dual biocidal modes and sustained release of Ag+ ions based on photocurable core-shell AgBr/cationic polymer nanocomposites. J Mater Sci. 2017;28(7):103.
Google Scholar
European Commission. Commission recommendation of 18 October 2011 on the definition of nanomaterial (2011/696/EU). Off J. 2011;275:38–40.
Google Scholar
Cao W, Zhang Y, Wang X, Li Q, Xiao Y, Li P, Wang L, Ye Z, Xing X. Novel resin-based dental material with anti-biofilm activity and improved mechanical property by incorporating hydrophilic cationic copolymer functionalized nanodiamond. J Mater Sci. 2018;29(10):162.
Google Scholar
Jeevanandam J, Barhoum A, Chan YS, Dufresne A, Danquah MK. Review on nanoparticles and nanostructured materials: history, sources, toxicity and regulations. Beilstein J Nanotechnol. 2018;9(1):1050–74.
Article
CAS
Google Scholar
Aeran H, Kumar V, Uniyal S, Tanwer P. Nanodentistry: Is just a fiction or future. J Oral Biol Craniofac Res. 2015;5(3):207–11.
Article
Google Scholar
Roduner E. Size matters: why nanomaterials are different. Chem Soc Rev. 2006;35(7):583–92.
Article
CAS
Google Scholar
Kim YH, Lee DK, Cha HG, Kim CW, Kang YC, Kang YS. Preparation and characterization of the antibacterial Cu nanoparticle formed on the surface of SiO2 nanoparticles. J Phys Chem B. 2006;110(49):24923–8.
Article
CAS
Google Scholar
Wang D, Lin Z, Wang T, Yao Z, Qin M, Zheng S, Lu W. Where does the toxicity of metal oxide nanoparticles come from: the nanoparticles, the ions, or a combination of both? J Hazardous Mater. 2016;308:328–34.
Article
CAS
Google Scholar
Bhushan J, Maini C. Nanoparticles: a promising novel adjunct for dentistry. Indian J Dent Sci. 2019;11(3):167.
Article
Google Scholar
Nel A, Xia T, Mädler L, Li N. Toxic potential of materials at the nanolevel. Science. 2006;311(5761):622–7.
Article
CAS
Google Scholar
Lynch I, Dawson KA. Protein-nanoparticle interactions. Nano Today. 2008;3(1–2):40–7.
Article
CAS
Google Scholar
Aggarwal P, Hall JB, McLeland CB, Dobrovolskaia MA, McNeil SE. Nanoparticle interaction with plasma proteins as it relates to particle biodistribution, biocompatibility and therapeutic efficacy. Adv Drug Deliv Rev. 2009;61(6):428–37.
Article
CAS
Google Scholar
Giannousi K, Lafazanis K, Arvanitidis J, Pantazaki A, Dendrinou-Samara C. Hydrothermal synthesis of copper based nanoparticles: antimicrobial screening and interaction with DNA. J Inorganic Biochem. 2014;133:24–32.
Article
CAS
Google Scholar
Arakha M, Pal S, Samantarrai D, Panigrahi TK, Mallick BC, Pramanik K, Mallick B, Jha S. Antimicrobial activity of iron oxide nanoparticle upon modulation of nanoparticle-bacteria interface. Sci Rep. 2015;5:14813.
Article
CAS
Google Scholar
Kirstein J, Turgay K. A new tyrosine phosphorylation mechanism involved in signal transduction in Bacillus subtilis. J Mol Microbiol Biotechnol. 2005;9(3–4):182–8.
Article
CAS
Google Scholar
American Association of Endodontists. Glossary of Endodontics terms. 9th ed. Chicago: American Association of Endodontists; 2016.
Google Scholar
Mohammadi Z. Sodium hypochlorite in endodontics: an update review. Int Dent J. 2008;58(6):329–41.
Article
Google Scholar
Shrestha A, Kishen A. Antibiofilm efficacy of photosensitizer- functionalized bioactive nanoparticles on multispecies biofilm. J Endod. 2014;40(10):1604–10.
Article
Google Scholar
Afkhami F, Akbari S, Chiniforush N. Entrococcus faecalis elimination in root canals using silver nanoparticles, photodynamic therapy, diode laser, or laser-activated nanoparticles: an in vitro study. J Endod. 2017;43(2):279–82.
Article
Google Scholar
Lee DK, Kim SV, Limansubroto AN, Yen A, Soundia A, Wang CY, Shi W, Hong C, Tetradis S, Kim Y, Park NH. Nanodiamond–gutta percha composite biomaterials for root canal therapy. ACS Nano. 2015;9(11):11490–501.
Article
CAS
Google Scholar
Kishen A, Shi Z, Shrestha A, Neoh KG. An investigation on the antibacterial and antibiofilm efficacy of cationic nanoparticulates for root canal disinfection. J Endod. 2008;34(12):1515–20.
Article
Google Scholar
del Carpio-Perochena A, Kishen A, Shrestha A, Bramante CM. Antibacterial properties associated with chitosan nanoparticle treatment on root dentin and 2 types of endodontic sealers. J Endod. 2015;41(8):1353–8.
Article
Google Scholar
Carpio IE, Santos CM, Wei X, Rodrigues DF. Toxicity of a polymer–graphene oxide composite against bacterial planktonic cells, biofilms, and mammalian cells. Nanoscale. 2012;4(15):4746–56.
Article
CAS
Google Scholar
Hu W, Peng C, Lv M, Li X, Zhang Y, Chen N, Fan C, Huang Q. Protein corona-mediated mitigation of cytotoxicity of graphene oxide. ACS Nano. 2011;5(5):3693–700.
Article
CAS
Google Scholar
Rago I, Bregnocchi A, Zanni E, D'Aloia AG, De Angelis F, Bossu M, De Bellis G, Polimeni A, Uccelletti D, Sarto MS. Antimicrobial activity of graphene nanoplatelets against Streptococcus mutans. In2015 IEEE 15th international conference on nanotechnology (IEEE-NANO) (2015) Jul 27 (pp. 9-12). IEEE.
Shrestha A, Zhilong S, Gee NK, Kishen A. Nanoparticulates for antibiofilm treatment and effect of aging on its antibacterial activity. J Endod. 2010;36(6):1030–5.
Article
Google Scholar
Barreras US, Mendez FT, Martinez RE, et al. Chitosan nanoparticles enhance the antibacterial activity of chlorhexidine in collagen membranes used for periapical guided tissue regeneration. Mater Sci Eng C Mater Biol Appl. 2016;58:1182–7.
Article
CAS
Google Scholar
Guerreiro-Tanomaru JM, Trindade-Junior A, Cesar Costa B, da Silva GF, Drullis Cifali L, Basso Bernardi MI, Tanomaru-Filho M. Effect of zirconium oxide and zinc oxide nanoparticles on physicochemical properties and antibiofilm activity of a calcium silicate-based material. Sci World J. 2014;975213:1–6. https://doi.org/10.1155/2014/975213.
Waltimo T, Mohn D, Paque F, Brunner TJ, Stark WJ, Imfeld T, Schätzle M, Zehnder M. Fine-tuning of bioactive glass for root canal disinfection. J Dent Res. 2009;88(3):235–8.
Article
CAS
Google Scholar
Wu C, Chang J, Fan W. Bioactive mesoporous calcium–silicate nanoparticles with excellent mineralization ability, osteostimulation, drug-delivery and antibacterial properties for filling apex roots of teeth. J Mater Chem. 2012;22(33):16801–9.
Article
CAS
Google Scholar
Ferreira J, Pires PT, Almeida C, Jerónimo S, Melo PR. Avaliação da Eficácia do nanoXIM CarePaste na Oclusão dos Túbulos Dentinários/Evaluation of the Efficacy of nanoXIM CarePaste in Dentinal Tubule Occlusion. InInternational Poster Journal of Dentistry and Oral Medicine-XXIII Congresso OMD; 2014.
Google Scholar
Khetawat S, Lodha S. Nanotechnology (nanohydroxyapatite crystals): recent advancement in treatment of dentinal hypersensitivity. J Interdiscipl Med Dent Sci. 2015;3:181.
Article
Google Scholar
Slenters TV, Hauser-Gerspach I, Daniels AU, Fromm KM. Silver coordination compounds as light-stable, nano-structured and anti-bacterial coatings for dental implant and restorative materials. J Mater Chem. 2008;18(44):5359–62.
Article
CAS
Google Scholar
Percival SL, Bowler PG, Russell D. Bacterial resistance to silver in wound care. J Hosp Infect. 2005;60(1):1–7.
Article
CAS
Google Scholar
Priyadarsini S, Mukherjee S, Mishra M. Nanoparticles used in dentistry: A review. J Oral Biol Craniofac Res. 2018;8(1):58–67.
Article
Google Scholar
Sathyanarayanan MB, Balachandranath R, Genji Srinivasulu Y, Kannaiyan SK, Subbiahdoss G. The effect of gold and iron-oxide nanoparticles on biofilm-forming pathogens. ISRN Microbiol. ISRN Microbiol. 2013;2013:272086.1–11. https://doi.org/10.1155/2013/272086.
Lughi V, Sergo V. Low temperature degradation-aging-of zirconia: A critical review of the relevant aspects in dentistry. Dent Mater. 2010;26(8):807–20.
Article
CAS
Google Scholar
Ramesh TR, Gangaiah M, Harish PV, Krishnakumar U, Nandakishore B. Zirconia Ceramics as a Dental Biomaterial--An Over view. Trends Biomater Artific Organs. 2012;26(3):154–60.
Hu C, Sun J, Long C, Wu L, Zhou C, Zhang X. Synthesis of nano zirconium oxide and its application in dentistry. Nanotechnol Rev. 2019;8(1):396–404.
Article
CAS
Google Scholar
Allahverdiyev AM, Abamor ES, Bagirova M, Rafailovich M. Antimicrobial effects of TiO2 and Ag2O nanoparticles against drug-resistant bacteria and leishmania parasites. Future Microbiol. 2011;6(8):933–40.
Article
CAS
Google Scholar
Haghighi F, Roudbar Mohammadi S, Mohammadi P, Hosseinkhani S, Shipour R. Antifungal activity of TiO2 nanoparticles and EDTA on Candida albicans biofilms. Inf Epidemiol Microbiol. 2013;1(1):33–8.
Google Scholar
Roy AS, Parveen A, Koppalkar AR, Prasad MA. Effect of nano-titanium dioxide with different antibiotics against methicillin-resistant Staphylococcus aureus. J Biomater Nanobiotechnol. 2010;1(1):37.
Article
CAS
Google Scholar
Yamamoto O, Ohira T, Alvarez K, Fukuda M. Antibacterial characteristics of CaCO3–MgO composites. Mater Sci Eng B. 2010;173(1–3):208–12.
Article
CAS
Google Scholar
Jin T, He Y. Antibacterial activities of magnesium oxide (MgO) nanoparticles against foodborne pathogens. J Nanoparticle Res. 2011;13(12):6877–85.
Article
CAS
Google Scholar
Ahamed M, Alhadlaq HA, Khan MM, Karuppiah P, Aldhabi NA. Synthesis, characterization and antimicrobial activity of copper oxide nanoparticles. J Nanomater. 2014;2014:1–4.
Article
CAS
Google Scholar
Mahapatra O, Bhagat M, Gopalakrishnan C, Arunachalam KD. Ultrafine dispersed CuO nanoparticles and their antibacterial activity. J Exp Nanosci. 2008;3:185–93.
Article
CAS
Google Scholar