Back S. The role of nanotechnology in sustainable textiles. BLACKBURN, R. S.: Sustainable Textiles. Woodhead Publishing. , 2009. 978–1–84569-453-1 p. 302–304.
DIN CEN ISO/TS 80004–1: Nanotechnologien – Fachwörterverzeichnis – Teil 1: Kernbegriffe (ISO/TS 80004–1:2015); Deutsche Fassung CEN ISO/TS 80004–1:2015.
DIN CEN ISO/TS 80004–2: Nanotechnologien – Fachwörterverzeichnis – Teil 2: Nanoobjekte (ISO/TS 80004–2:2015); Deutsche Fassung CEN ISO/TS 80004–2:2017.
Brown T, Dalton P, Hutmacher DW, et al. Melt electrospinning today: an opportune time for an emerging polymer process. Elsevier. 2016;56:116–66.
CAS
Google Scholar
Bhat GS. Advances in polymeric nanofiber manufacturing technologies. J Nanomater Mol Nanotechnol. 2016;5:2324.
Article
Google Scholar
Sundarrajan S, Tan KL, Lim SH, et al. Electrospun nanofibers for air filtration applications. Procedia Eng. 2014;75:159–63.
Article
CAS
Google Scholar
Scholten E, Bromberg L, Rutledge GC, et al. Electrospun polyurethane fibers for absorption of volatile organic compounds from air. ACS Appl Mater Interfaces. 2011;3:3902–9.
Article
CAS
Google Scholar
Sarbatly R, Krishnaiah D, Kamin Z. A review of polymer nanofibres by electrospinning and their application in oil–water separation for cleaning up marine oil spills. Mar Pollut Bull. 2016;106:8–16.
Article
CAS
Google Scholar
Song M, Park S, Alamgir F, et al. Nanostructured electrodes for lithium-ion and lithium-air batteries: the latest developments, challenges, and perspectives. Mater Sci Eng R Reports. 2011;72:203–52.
Article
CAS
Google Scholar
Wang J, Li Y, Sun X. Challenges and opportunities of nanostructured materials for aprotic rechargeable lithium–air batteries. Nano Energy. 2013;2:443–67.
Article
CAS
Google Scholar
Zhang G, Zheng J, Liang R, et al. α-MnO2/carbon nanotube/carbon nanofiber composite catalytic air electrodes for rechargeable lithium-air batteries.
jes.ecsdl.org
2011; 158: A822.
Truong TT, Liu Y, Ren Y, et al. Morphological and crystalline evolution of nanostructured MnO 2 and its application in lithium–air batteries. ACS Nano. 2012;6:8067–77.
Article
CAS
Google Scholar
Wang X, Drew C, Lee S-H, et al. Electrospun Nanofibrous membranes for highly sensitive optical sensors. Nano Lett. 2002;2:1273–5.
Article
CAS
Google Scholar
Bhardwaj N, Kundu SC. Electrospinning: a fascinating fiber fabrication technique. Biotechnol Adv. 2010;28:325–47.
Article
CAS
Google Scholar
Ma B, Xie J, Jiang J, et al. Rational design of nanofiber scaffolds for orthopedic tissue repair and regeneration. Nanomedicine (Lond). 2013;8:1459–81.
Article
CAS
Google Scholar
Shin S-H, Purevdorj O, Castano O, et al. A short review: recent advances in electrospinning for bone tissue regeneration. J Tissue Eng. 2012;3:1–9.
Article
CAS
Google Scholar
McClellan P, Landis WJ. Recent applications of coaxial and emulsion electrospinning methods in the field of tissue engineering. Biores Open Access. 2016;5:212–27.
Article
CAS
Google Scholar
Cui W, Zhou Y, Chang J. Electrospun nanofibrous materials for tissue engineering and drug delivery. Sci Technol Adv Mater. 2010;11:014108.
Article
CAS
Google Scholar
Sill T, von Recum HA. Electrospinning: applications in drug delivery and tissue engineering. Biomaterials. 2008;29(13):1989–2006.
Article
CAS
Google Scholar
Yoo H, Kim TG, Park TG. Surface-functionalized electrospun nanofibers for tissue engineering and drug delivery. Adv Drug Deliv Rev. 2009;61(12):1033–42.
Article
CAS
Google Scholar
Khajavi R, Abbasipour M, Bahador A. Electrospun biodegradable nanofibers scaffolds for bone tissue engineering. J Appl Polym Sci. 2016;133:42883.
Article
CAS
Google Scholar
Venugopal J, Low S, Choon AT, et al. Interaction of cells and nanofiber scaffolds in tissue engineering. J Biomed Mater Res Part B Appl Biomater. 2008;84(1):34–48.
Article
CAS
Google Scholar
Vasita R, Katti DS. Nanofibers and their applications in tissue engineering. Int J Nanomedicine. 2006;1:15–30.
Article
CAS
Google Scholar
Chew SY, Wen Y, Dzenis Y, et al. The role of electrospinning in the emerging field of nanomedicine. Curr Pharm Des. 2006;12:4751–70.
Article
CAS
Google Scholar
Chakraborty S, Liao I-C, Adler A, et al. Electrohydrodynamics: a facile technique to fabricate drug delivery systems. Adv Drug Deliv Rev. 2009;61:1043–54.
Article
CAS
Google Scholar
Goyal R, Macri LK, Kaplan HM, et al. Nanoparticles and nanofibers for topical drug delivery. J Control Release. 2016;240:77–92.
Article
CAS
Google Scholar
Zamani M, Prabhakaran MP, Ramakrishna S. Advances in drug delivery via electrospun and electrosprayed nanomaterials. Int J Nanomedicine. 2013;8:2997–3017.
Google Scholar
Weng L, Xie J. Smart electrospun nanofibers for controlled drug release: recent advances and new perspectives. Curr Pharm Des. 2015;21:1944–59.
Article
CAS
Google Scholar
Chou S-F, Carson D, Woodrow KA. Current strategies for sustaining drug release from electrospun nanofibers. J Control Release. 2015;220:584–91.
Article
CAS
Google Scholar
Zeng J, Xu X, Chen X, et al. Biodegradable electrospun fibers for drug delivery. Elsevier. 2003;92:227–31.
CAS
Google Scholar
Katti DS, Robinson KW, Ko FK, et al. Bioresorbable nanofiber-based systems for wound healing and drug delivery: optimization of fabrication parameters. J Biomed Mater Res. 2004;70(2):286–96.
Article
CAS
Google Scholar
Hu X, Liu S, Zhou G, et al. Electrospinning of polymeric nanofibers for drug delivery applications. Elsevier. 2014;185:12–21.
CAS
Google Scholar
Kenawy E, Abdel-Hay, El-Newehy MH, et al. Processing of polymer nanofibers through electrospinning as drug delivery systems. Elsevier. 2009;113:296–302.
CAS
Google Scholar
Shen X, Yu D, Zhu L, et al. Electrospun diclofenac sodium loaded Eudragit® L 100-55 nanofibers for colon-targeted drug delivery. Int J Pharm. 2011;408:200–7.
Article
CAS
Google Scholar
Pillay V, Dott C, Choonara Y, et al. A review of the effect of processing variables on the fabrication of electrospun nanofibers for drug delivery applications.
hindawi.com
2013; 2013: 22.
Naves LB, Dhand C, Venugopal JR, et al. Nanotechnology for the treatment of melanoma skin cancer. Prog Biomater. 2017;6:13–26.
Article
CAS
Google Scholar
Chen Z, Chen Z, Zhang A, et al. Electrospun nanofibers for cancer diagnosis and therapy. Biomater Sci. 2016;4:922–32.
Article
CAS
Google Scholar
Kim Y-J, Ebara M, Aoyagi T. A smart hyperthermia nanofiber with switchable drug release for inducing Cancer apoptosis. Adv Funct Mater. 2013;23:5753–61.
Article
CAS
Google Scholar
Shi D, Bedford NM, Cho H-S. Engineered multifunctional Nanocarriers for Cancer diagnosis and therapeutics. Small. 2011;7:2549–67.
Article
CAS
Google Scholar
Zhang N, Deng Y, Tai Q, et al. Electrospun TiO2 nanofiber-based cell capture assay for detecting circulating tumor cells from colorectal and gastric Cancer patients. Adv Mater. 2012;24:2756–60.
Article
CAS
Google Scholar
Kwnry, Lim CT: Nanofiber technology: current status and emerging developments. In: Topical Volume on Advanced Polymeric Materials Bd. 2017; 70: 1–17.
Blim A, Jarecki L, Blonski S. Modeling of pneumatic melt drawing of polypropylene super-thin fibers in the Laval nozzle. Bull Pol Ac. 2014;62:42–54.
Google Scholar
NANOVAL GMBH & CO KG: Nanoval - Process. https://www.nanoval.de/index.php. Accessed 17 Oct 2018.
Badrossamay MR, McIlwee HA, Goss JA, Parker KK. Nanofiber assembly by rotary jet-spinning. Nano Lett. 2010;10(6):2257–6.
Article
CAS
Google Scholar
Medeiros ES, Glenn GM, Klamcynski AP, Orts WJ, Mattoso LH. Solution blow spinning: a new method to produce micro- and nanofibers from polymer solutions. J Appl Polym Sci. 2009;113(4):2322–30.
Article
CAS
Google Scholar
Ma J, Zhang Q, Zhang Y, et al. A rapid and simple method to draw polyethylene nanofibers with enhanced thermal conductivity. Appl Phys Lett. 2016;109:033101.
Article
CAS
Google Scholar
Masuda M, Funakoshi J. Island-in-sea fiber, combined filament yarn and textile product. EP2821533A1 2012.
Biswas A, Bayer IS, Biris AS, Wang T, Dervishi E, et al. Advances in top–down and bottom–up surface nanofabrication: techniques, applications & future prospects. Adv Colloid Interf Sci. 2012;170(1):2–27.
Article
CAS
Google Scholar
Barnes CP, Sell SA, Boland ED, Simpson DG, Bowlin GL. Nanofiber technology: designing the next generation of tissue engineering scaffolds. Adv Drug Deliv Rev. 2007;59(14):1413–33.
Article
CAS
Google Scholar
Martin CR. Template synthesis of electronically conductive polymer nanostructures. Acc Chem Res. 1995;28:61–8.
Article
CAS
Google Scholar
Suvorov VG, Zubarev NM. Formation of the Taylor cone on the surface of liquid metal in the presence of an electric field. J Phys D Appl Phys. 2004;37:289–97.
Article
CAS
Google Scholar
Suvorov VG, Litvinov EA. Dynamic Taylor cone formation on liquid metal surface: numerical modelling. J Phys D Appl Phys. 2000;33:1245–51.
Article
CAS
Google Scholar
Yarin AL, Koombhongse S, Reneker DH. Taylor cone and jetting from liquid droplets in electrospinning of nanofibers. J Appl Phys. 2001;90:4836–46.
Article
CAS
Google Scholar
Li D, Xia Y. Electrospinning of nanofibers: reinventing the wheel? Adv Mater. 2004;16:1151–70.
Article
CAS
Google Scholar
Ramakrishna S, Fujihara K, Teo W-E, et al. Electrospun nanofibers: solving global issues. Mater Today. 2006;9:40–50.
Article
CAS
Google Scholar
Ahn YC, Park SK, Kim GT, Hwang XY, Lee CG et al. Development of high efficiency nanofilters made of nanofibers. Nano Korea 2004 Symposium on NT Challenge 2006; 6(6): 1030–1035.
Hutmacher DW, Dalton PD. Melt electrospinning. Chem - An Asian J. 2011;6:44–56.
Article
CAS
Google Scholar
Xing X, Wang Y, Li B. Nanofibers drawing and nanodevices assembly in poly(trimethylene terephthalate). Opt Express. 2008;16:10815.
Article
CAS
Google Scholar
Bajakova J, Chaloupek J, et al. “Drawing”- The production of individual nanofibers by experimental method. Nanocon. 2011.
Ndaro MS, Jin X, Chen T, et al. Splitting of islands-in-the-sea fibers ( PA6/COPET ) during hydroentangling of nonwovens. J Eng Fiber Fabr. 2007;2:1–9.
Google Scholar
Nakata K, Fujii K, Ohkoshi Y, et al. Poly(ethylene terephthalate) nanofibers made by Sea–Island-type conjugated melt spinning and laser-heated flow drawing. Macromol Rapid Commun. 2007;28:792–5.
Article
CAS
Google Scholar
Shambaugh RL. A macroscopic view of the melt-blowing process for producing microfibers. Ind Eng Chem Res. 1988;27:2363–72.
Article
CAS
Google Scholar
Uppal R, Bhat G, Eash C, et al. Meltblown nanofiber media for enhanced quality factor. Fibers Polym. 2013;14:660–8.
Article
CAS
Google Scholar
Yoon K, Hsiao BS, Chu B. Functional nanofibers for environmental applications. J Mater Chem. 2008;18:5326–34.
Article
CAS
Google Scholar
Gerkin L. Nanoval process for spunbonds detailed. Int Fiber J. 2005;20:52–6.
Google Scholar
Kim YM, Ahn KR, Sung YB, et al. Manufacturing device and the method of preparing for the nanofibers viaelectro-blown spining process. US 7,618,579 B2, USPTO, 2011.
Palmer L. Flash spinning. US3565979A, USPTO, 1968.
Nayak R, Padhye R, Kyratzis IL, et al. Recent advances in nanofibre fabrication techniques. Text Res J. 2012;82:129–47.
Article
CAS
Google Scholar
Martin CR. Nanomaterials: a membrane-based synthetic approach. Science. 1994;266:1961–6.
Article
CAS
Google Scholar
Karatas A, Algan AH. KARATAŞ.Template synthesis of tubular nanostructures for loading biologically active molecules. Curr Top Med Chem. 2016;17.
Malkar NB, Lauer-Fields JL, Juska D, et al. Characterization of peptide−Amphiphiles possessing cellular activation sequences. Biomacromolecules. 2003;4:518–28.
Article
CAS
Google Scholar
Hassanzadeh P, Kharaziha M, Nikkhah M, Shin SR, Jin J, et al. Chitin nanofiber micropatterned flexible substrates for tissue engineering. J Mater Chem. 2013;1(34):4217–24.
Article
CAS
Google Scholar
Zhang X, Lu Y. Centrifugal spinning: an alternative approach to fabricate nanofibers at high speed and low cost. Polym Rev. 2014;54:677–701.
Article
CAS
Google Scholar
Hammami MA, Krifa M, Harzallah O. Centrifugal force spinning of PA6 nanofibers - processability and morphology of solution-spun fibers. J Text Inst. 2014;105:637–47.
Article
CAS
Google Scholar
Peno E, Lipton R, Kay S. Split fiber producing devices and methods for the production of microfibers and nanofibers. US8778240B2, USPTO, 2012.
Ren L, Ozisik R, Kotha SP. Rapid and efficient fabrication of multilevel structured silica micro−/nanofibers by centrifugal jet spinning. J Colloid Interface Sci. 2014;425:136–42.
Article
CAS
Google Scholar
Ren L, Ozisik R, Kotha SP, Underhill P. Highly efficient fabrication of polymer nanofiber assembly by centrifugal jet spinning: process and characterization. Macromolecules. 2015;48(8):2593–602.
Article
CAS
Google Scholar
Garg K, Bowlin GL. Electrospinning jets and nanofibrous structures. Biomicrofluidics. 2011;5:13403.
Article
CAS
Google Scholar
Nayak R. Polypropylene nanofibers: melt electrospinning versus Meltblowing. Engineering Material: Springer International Publishing; 2017.
Book
Google Scholar
Bubakir M, Barhoum A, Li H, Yang W. Handbook of nanofibers (1st edtn), springer nature; 2017.
Google Scholar
Willerth SM. Electrospun materials for tissue engineering and biomedical applications: research. Design and Commercialization: Woodhead Publishing; 2017.
Google Scholar
Wunner FM, Wille ML, Nanoon TG, Bas O, Dalton PD, et al. Melt electrospinning writing of highly ordered large volume scaffold architectures. Adv Mater. 2018;30:1706570.
Article
CAS
Google Scholar
Wunner FM, Maartens J, Bas O, Gottschalk K, De-Juan-Pardo E, et al. Electrospinning writing with molten poly (ε-caprolactone) from different directions – examining the effects of gravity. Material Letters. 2018;216:114–8.
Article
CAS
Google Scholar
Eichholz KF, Hoey DA. Mediating human stem cell behaviour via defined fibrous architectures by melt electrospinning writing. Acta Biomater. 2018;75:140–51.
Article
CAS
Google Scholar
Dayan CB, Afghah F, Okan BS, Yıldız M, Menceloglu Y, et al. Modeling 3D melt electrospinning writing by response surface methodology. Mater Des. 2018;148:87–95.
Article
CAS
Google Scholar
Zhao F, Liu Y, Yuan H, et al. Orthogonal design study on factors affecting the degradation of polylactic acid fibers of melt electrospinning. J Appl Polym Sci. 2012;125:2652–8.
Article
CAS
Google Scholar
Li X, Liu H, Liu J, et al. Preparation and experimental parameters analysis of laser melt electrospun poly(L-lactide) fibers via orthogonal design. Polym Eng Sci. 2012;52:1964–7.
Article
CAS
Google Scholar
Larrondo L, St. John Manley R. Electrostatic fiber spinning from polymer melts. I. Experimental observations on fiber formation and properties. J Polym Sci Polym Phys Ed 1981; 19: 909–920.
Dalton PD, Lleixà Calvet J, Mourran A, et al. Melt electrospinning of poly-(ethylene glycol-block-ε-caprolactone). Biotechnol J. 2006;1:998–1006.
Article
CAS
Google Scholar
Yoon Y Il, Park KE, Lee SJ, et al. Fabrication of microfibrous and nano−/microfibrous scaffolds: melt and hybrid electrospinning and surface modification of poly(L-lactic acid) with plasticizer. Biomed Res Int 2013; 2013: 309048.
Zhou H, Green TB, Joo YL. The thermal effects on electrospinning of polylactic acid melts. Polymer (Guildf). 2006;47:7497–505.
Article
CAS
Google Scholar
Brown TD, Dalton PD, Hutmacher DW. Direct writing by way of melt electrospinning. Adv Mater. 2011;23:5651–7.
Article
CAS
Google Scholar
Li H, Chen H, Zhong X, et al. Interjet distance in needleless melt differential electrospinning with umbellate nozzles. J Appl Polym Sci. 2014;131:40515.
Google Scholar
Liu Y, Zhao F, Zhang C, Zhang J, Yang W. Solvent-free preparation of poly(lactic acid) fibers by melt electrospinning using an umbrella-like spray head and alleviation of the problematic thermal degradation. J Serb Chem Soc. 2012;77:1071–82.
Article
CAS
Google Scholar
Hacker CJP, Seide G, Gries T, Thomas H, Moeller M. (2009) Electrospinning of polymer melt: steps toward an upscaled multi-jet process. In:proc Int confer latest advances in high tech textiles and textile-based materials: 71–76.
Koenig K, Daenicke J, Langensiepen F, Seide G, Schubert DW. From lab to pilot scale: melt electrospun nanofibers of polypropylene with conductive additives. J Nanomater Mol Nanotechnol. 2019;8:1.
Google Scholar
Luo L-B, Yu S-H, Qian H-S, et al. Large-scale synthesis of flexible gold/cross-linked-PVA sub-microcables and cross-linked-PVA tubes/fibers by using templating approaches based on silver/cross-linked-PVA sub-microcables. Chemistry. 2006;12:3320–4.
Article
CAS
Google Scholar
Wang Y, Zheng M, Lu H, et al. Template synthesis of carbon nanofibers containing linear mesocage arrays. Nanoscale Res Lett. 2010;5:913–6.
Article
CAS
Google Scholar
Rolandi M, Rolandi R. Self-assembled chitin nanofibers and applications. Adv Colloid Interf Sci. 2014;207:216–22.
Article
CAS
Google Scholar
Xu D, Samways DSK, Dong H. Fabrication of self-assembling nanofibers with optimal cell uptake and therapeutic delivery efficacy. Bioact Mater. 2017;2:260–8.
Article
Google Scholar