Ngwa W, Irabor OC, Schoenfeld JD, Hesser J, Demaria S, Formenti SC. Using immunotherapy to boost the abscopal effect. Nat Rev Cancer. 2018;18(5):313–22. https://doi.org/10.1038/nrc.2018.6.
Article
CAS
Google Scholar
Goto T. Radiation as an in situ auto-vaccination: current perspectives and challenges. Vaccines. 2019;7(3):100.
Article
CAS
Google Scholar
Zhang J, Yang M, Fan X, Zhu M, Yin Y, Li H, et al. Biomimetic radiosensitizers unlock radiogenetics for local interstitial radiotherapy to activate systematic immune responses and resist tumor metastasis. J Nanobiotechnol. 2022;20(1):103. https://doi.org/10.1186/s12951-022-01324-w.
Article
CAS
Google Scholar
Chao Y, Xu L, Liang C, Feng L, Xu J, Dong Z, et al. Combined local immunostimulatory radioisotope therapy and systemic immune checkpoint blockade imparts potent antitumour responses. Nat Biomed Eng. 2018;2(8):611–21. https://doi.org/10.1038/s41551-018-0262-6.
Article
CAS
Google Scholar
Luo T, Wang D, Liu L, Zhang Y, Han C, Xie Y, et al. Switching reactive oxygen species into reactive nitrogen species by photocleaved O-2-released nanoplatforms favors hypoxic tumor repression. Adv Sci. 2021;8(19):2101065. https://doi.org/10.1002/advs.202101065.
Article
CAS
Google Scholar
Parker C, Lewington V, Shore N, Kratochwil C, Levy M, Lindén O, et al. Targeted alpha therapy, an emerging class of Cancer agents: a review. JAMA Oncol. 2018;4(12):1765–72. https://doi.org/10.1001/jamaoncol.2018.4044.
Article
Google Scholar
McDevitt MR, Sgouros G, Sofou S. Targeted and nontargeted α-particle therapies. Annu Rev Biomed Eng. 2018;20(1):73–93. https://doi.org/10.1146/annurev-bioeng-062117-120931.
Article
CAS
Google Scholar
Ma B, Wang S, Liu F, Zhang S, Duan J, Li Z, et al. Self-assembled copper-amino acid nanoparticles for in situ glutathione "AND" H(2)O(2) sequentially triggered Chemodynamic therapy. J Am Chem Soc. 2019;141(2):849–57. https://doi.org/10.1021/jacs.8b08714.
Article
CAS
Google Scholar
Xu Y, Guo Y, Zhang C, Zhan M, Jia L, Song S, et al. Fibronectin-coated metal–phenolic networks for cooperative tumor chemo−/Chemodynamic/immune therapy via enhanced Ferroptosis-mediated immunogenic cell death. ACS Nano. 2022;16(1):984–96. https://doi.org/10.1021/acsnano.1c08585.
Article
CAS
Google Scholar
Chang M, Wang M, Wang M, Shu M, Ding B, Li C, et al. A multifunctional Cascade bioreactor based on hollow-structured Cu2MoS4 for synergetic Cancer chemo-dynamic therapy/starvation therapy/phototherapy/immunotherapy with remarkably enhanced efficacy. Adv Mater. 2019;31(51):1905271. https://doi.org/10.1002/adma.201905271.
Article
CAS
Google Scholar
Banerjee D, Cieslar-Pobuda A, Zhu GH, Wiechec E, Patra HK. Adding nanotechnology to the metastasis treatment arsenal. Trends Pharmacol Sci. 2019;40(6):403–18. https://doi.org/10.1016/j.tips.2019.04.002.
Article
CAS
Google Scholar
Solomon BL, Garrido-Laguna I. TIGIT: a novel immunotherapy target moving from bench to bedside. Cancer Immunol Immunother. 2018;67(11):1659–67. https://doi.org/10.1007/s00262-018-2246-5.
Article
CAS
Google Scholar
Hodi FS, O'Day SJ, McDermott DF, Weber RW, Sosman JA, Haanen JB, et al. Improved survival with ipilimumab in patients with metastatic melanoma. N Engl J Med. 2010;363(8):711–23. https://doi.org/10.1056/NEJMoa1003466.
Article
CAS
Google Scholar
Herbst RS, Soria JC, Kowanetz M, Fine GD, Hamid O, Gordon MS, et al. Predictive correlates of response to the anti-PD-L1 antibody MPDL3280A in cancer patients. Nature. 2014;515(7528):563–7. https://doi.org/10.1038/nature14011.
Article
CAS
Google Scholar
Sharma P, Allison JP. The future of immune checkpoint therapy. Science. 2015;348(6230):56–61. https://doi.org/10.1126/science.aaa8172.
Article
CAS
Google Scholar
Pardoll DM. The blockade of immune checkpoints in cancer immunotherapy. Nat Rev Cancer. 2012;12(4):252–64. https://doi.org/10.1038/nrc3239.
Article
CAS
Google Scholar
Lei L, Cai S, Zhang Y, Yang L, Deng J, Mei H, et al. Structure inversion-bridged sequential amino acid metabolism disturbance potentiates photodynamic-evoked immunotherapy. Adv Funct Mater. 2022;32(21):2103394. https://doi.org/10.1002/adfm.202103394.
Article
CAS
Google Scholar
Mei H, Zhang X, Cai S, Zhang X, Zhang Y, Guo Z, et al. Fluorocarbon-driven photosensitizer assembly decodes energy conversion pathway for suppressing breast tumor. Nano Today. 2021;41:101305. https://doi.org/10.1016/j.nantod.2021.101305.
Article
CAS
Google Scholar
Yang W, Guo W, Le W, Lv G, Zhang F, Shi L, et al. Albumin-bioinspired Gd:CuS Nanotheranostic agent for in vivo photoacoustic/magnetic resonance imaging-guided tumor-targeted Photothermal therapy. ACS Nano. 2016;10(11):10245–57. https://doi.org/10.1021/acsnano.6b05760.
Article
CAS
Google Scholar
de Kruijff RM, Wolterbeek HT, Denkova AG. A critical review of alpha radionuclide therapy-how to Deal with recoiling daughters? Pharmaceuticals (Basel). 2015;8(2):321–36. https://doi.org/10.3390/ph8020321.
Article
CAS
Google Scholar
Dziawer Ł, Majkowska-Pilip A, Gaweł D, Godlewska M, Pruszyński M, Jastrzębski J, et al. Trastuzumab-modified gold nanoparticles labeled with 211At as a prospective tool for local treatment of HER2-positive breast Cancer. Nanomaterials. 2019;9(4):632. https://doi.org/10.3390/nano9040632.
Article
CAS
Google Scholar
Yin Y, Jiang X, Sun L, Li H, Su C, Zhang Y, et al. Continuous inertial cavitation evokes massive ROS for reinforcing sonodynamic therapy and immunogenic cell death against breast carcinoma. Nano Today. 2021;36:101009. https://doi.org/10.1016/j.nantod.2020.101009.
Article
CAS
Google Scholar
Wu H, Li H, Liu Y, Liang J, Liu Q, Xu Z, et al. Blockading a new NSCLC immunosuppressive target by pluripotent autologous tumor vaccines magnifies sequential immunotherapy. Bioact Mater. 2022;13:223–38. https://doi.org/10.1016/j.bioactmat.2021.10.048.
Article
CAS
Google Scholar
Chen M, Liao H, Bu Z, Wang D, Fang C, Liang X, et al. Pyroptosis activation by photodynamic-boosted nanocatalytic medicine favors malignancy recession. Chem Eng J. 2022;441:136030. https://doi.org/10.1016/j.cej.2022.136030.
Article
CAS
Google Scholar
Liu W, Ma H, Tang Y, Chen Q, Peng S, Yang J, et al. One-step labelling of a novel small-molecule peptide with astatine-211: preliminary evaluation in vitro and in vivo. J Radioanal Nucl Chem. 2018;316(2):451–6. https://doi.org/10.1007/s10967-018-5780-x.
Article
CAS
Google Scholar
Ma H, Li F, Shen G, Pan L, Liu W, Liang R, et al. In vitro and in vivo evaluation of 211At-labeled fibroblast activation protein inhibitor for glioma treatment. Bioorg Med Chem. 2022;55:116600. https://doi.org/10.1016/j.bmc.2021.116600.
Article
CAS
Google Scholar
Lin LS, Song J, Song L, Ke K, Liu Y, Zhou Z, et al. Simultaneous Fenton-like ion delivery and glutathione depletion by MnO(2) -based Nanoagent to enhance Chemodynamic therapy. Angew Chem Int Ed Engl. 2018;57(18):4902–6. https://doi.org/10.1002/anie.201712027.
Article
CAS
Google Scholar
Wang T, Xu X, Zhang K. Nanotechnology-enabled chemodynamic therapy and immunotherapy. Curr Cancer Drug Tar. 2021;21(7):545–57. https://doi.org/10.2174/1568009621666210219101552.
Article
CAS
Google Scholar
Yang M, Zhang Y, Fang C, Song L, Wang Y, Lu L, et al. Urine-microenvironment-initiated composite hydrogel patch reconfiguration propels Scarless memory repair and reinvigoration of the urethra. Adv Mater. 2022;34(14):2109522. https://doi.org/10.1002/adma.202109522.
Article
CAS
Google Scholar
Cao H, Duan L, Zhang Y, Cao J, Zhang K. Current hydrogel advances in physicochemical and biological response-driven biomedical application diversity. Signal Transduct Target Ther. 2021;6(1):426. https://doi.org/10.1038/s41392-021-00830-x.
Article
CAS
Google Scholar
Kong F, Fang C, Zhang Y, Duan L, Du D, Xu G, et al. Abundance and metabolism disruptions of intratumoral microbiota by chemical and physical actions unfreeze tumor treatment resistance. Adv Sci. 2022;9(7):2105523. https://doi.org/10.1002/advs.202105523.
Article
CAS
Google Scholar
Zhang K, Li H-Y, Lang J-Y, Li X-T, Yue W-W, Yin Y-F, et al. Quantum yield-engineered biocompatible probes illuminate lung tumor based on viscosity confinement-mediated antiaggregation. Adv Funct Mater. 2019;29(44):1905124. https://doi.org/10.1002/adfm.201905124.
Article
CAS
Google Scholar
Zhang Y, Yin Y, Zhang W, Li H, Wang T, Yin H, et al. Reactive oxygen species scavenging and inflammation mitigation enabled by biomimetic prussian blue analogues boycott atherosclerosis. J Nanobiotechnol. 2021;19(1):161. https://doi.org/10.1186/s12951-021-00897-2.
Article
CAS
Google Scholar
Hou Q, Zhang K, Chen S, Chen J, Zhang Y, Gong N, et al. Physical & chemical microwave ablation (MWA) enabled by nonionic MWA nanosensitizers repress incomplete MWA-arised liver tumor recurrence. ACS Nano. 2022. https://doi.org/10.1021/acsnano.1c10714.
Kaneda-Nakashima K, Zhang Z, Manabe Y, Shimoyama A, Kabayama K, Watabe T, et al. α-Emitting cancer therapy using (211) at-AAMT targeting LAT1. Cancer Sci. 2021;112(3):1132–40. https://doi.org/10.1111/cas.14761.
Article
CAS
Google Scholar
Zhang J, Zhao B, Chen S, Wang Y, Zhang Y, Wang Y, et al. Near-infrared light irradiation induced mild hyperthermia enhances glutathione depletion and DNA Interstrand cross-link formation for efficient chemotherapy. ACS Nano. 2020;14(11):14831–45. https://doi.org/10.1021/acsnano.0c03781.
Article
CAS
Google Scholar
Pieper AA, Rakhmilevich AL, Spiegelman DV, Patel RB, Birstler J, Jin WJ, et al. Combination of radiation therapy, bempegaldesleukin, and checkpoint blockade eradicates advanced solid tumors and metastases in mice. J Immunother Cancer. 2021;9(6). https://doi.org/10.1136/jitc-2021-002715.
Ma J, Han H, Ma L, Liu C, Xue X, Ma P, et al. The immunostimulatory effects of retinoblastoma cell supernatant on dendritic cells. Protein Cell. 2014;5(4):307–16. https://doi.org/10.1007/s13238-014-0029-0.
Article
CAS
Google Scholar
Pei P, Shen W, Zhou H, Sun Y, Zhong J, Liu T, et al. Radionuclide labeled gold nanoclusters boost effective anti-tumor immunity for augmented radio-immunotherapy of cancer. Nano Today. 2021;38. https://doi.org/10.1016/j.nantod.2021.101144.
Liang C, Chao Y, Yi X, Xu J, Feng L, Zhao Q, et al. Nanoparticle-mediated internal radioisotope therapy to locally increase the tumor vasculature permeability for synergistically improved cancer therapies. Biomaterials. 2019;197:368–79. https://doi.org/10.1016/j.biomaterials.2019.01.033.
Article
CAS
Google Scholar
Ren J, Xu M, Chen J, Ding J, Wang P, Huo L, et al. PET imaging facilitates antibody screening for synergistic radioimmunotherapy with a (177)Lu-labeled αPD-L1 antibody. Theranostics. 2021;11(1):304–15. https://doi.org/10.7150/thno.45540.
Article
CAS
Google Scholar
Hermiston ML, Xu Z, Weiss A. CD45: a critical regulator of signaling thresholds in immune cells. Annu Rev Immunol. 2003;21:107–37. https://doi.org/10.1146/annurev.immunol.21.120601.140946.
Article
CAS
Google Scholar
Zhang K, Fang Y, He Y, Yin H, Guan X, Pu Y, et al. Extravascular gelation shrinkage-derived internal stress enables tumor starvation therapy with suppressed metastasis and recurrence. Nat Commun. 2019;10(1):5380. https://doi.org/10.1038/s41467-019-13115-3.
Article
CAS
Google Scholar
Chen Q, Chen J, Yang Z, Xu J, Xu L, Liang C, et al. Nanoparticle-enhanced radiotherapy to trigger robust Cancer immunotherapy. Adv Mater. 2019;31(10):e1802228. https://doi.org/10.1002/adma.201802228.
Article
CAS
Google Scholar
Teixeiro E, Daniels MA, Hamilton SE, Schrum AG, Bragado R, Jameson SC, et al. Different T cell receptor signals determine CD8+ memory versus effector development. Science. 2009;323(5913):502–5. https://doi.org/10.1126/science.1163612.
Article
CAS
Google Scholar
Kinjyo I, Qin J, Tan S-Y, Wellard CJ, Mrass P, Ritchie W, et al. Real-time tracking of cell cycle progression during CD8+ effector and memory T-cell differentiation. Nat Commun. 2015;6(1):6301. https://doi.org/10.1038/ncomms7301.
Article
CAS
Google Scholar
Sallusto F, Lenig D, Förster R, Lipp M, Lanzavecchia A. Two subsets of memory T lymphocytes with distinct homing potentials and effector functions. Nature. 1999;401(6754):708–12. https://doi.org/10.1038/44385.
Article
CAS
Google Scholar
Wherry EJ, Teichgräber V, Becker TC, Masopust D, Kaech SM, Antia R, et al. Lineage relationship and protective immunity of memory CD8 T cell subsets. Nat Immunol. 2003;4(3):225–34. https://doi.org/10.1038/ni889.
Article
CAS
Google Scholar
Kaech SM, Cui W. Transcriptional control of effector and memory CD8+ T cell differentiation. Nat Rev Immunol. 2012;12(11):749–61. https://doi.org/10.1038/nri3307.
Article
CAS
Google Scholar
Martinez-Usatorre A, Kadioglu E, Boivin G, Cianciaruso C, Guichard A, Torchia B, et al. Overcoming microenvironmental resistance to PD-1 blockade in genetically engineered lung cancer models. Sci Transl Med. 2021;13(606):eabd1616. https://doi.org/10.1126/scitranslmed.abd1616.
Article
CAS
Google Scholar
Braun DA, Street K, Burke KP, Cookmeyer DL, Denize T, Pedersen CB, et al. Progressive immune dysfunction with advancing disease stage in renal cell carcinoma. Cancer Cell. 2021;39(5):632–648.e638. https://doi.org/10.1016/j.ccell.2021.02.013.
Article
CAS
Google Scholar
Bassez A, Vos H, Van Dyck L, Floris G, Arijs I, Desmedt C, et al. A single-cell map of intratumoral changes during anti-PD1 treatment of patients with breast cancer. Nat Med. 2021;27(5):820–32. https://doi.org/10.1038/s41591-021-01323-8.
Article
CAS
Google Scholar
Pérez-Guijarro E, Yang HH, Araya RE, El Meskini R, Michael HT, Vodnala SK, et al. Multimodel preclinical platform predicts clinical response of melanoma to immunotherapy. Nat Med. 2020;26(5):781–91. https://doi.org/10.1038/s41591-020-0818-3.
Article
CAS
Google Scholar
Zhou L, Zeng Z, Egloff AM, Zhang F, Guo F, Campbell KM, et al. Checkpoint blockade-induced CD8+ T cell differentiation in head and neck cancer responders. J Immunother Cancer. 2022;10(1):e004034. https://doi.org/10.1136/jitc-2021-004034.
Article
Google Scholar