Wang X, Ahmad M, Sun H. Three-dimensional ZnO hierarchical nanostructures: solution phase synthesis and applications. Materials. 2017;10(11):1304. https://doi.org/10.3390/ma10111304.
Article
CAS
Google Scholar
Pulit-Prociak J, Chwastowski J, Bittencourt Rodrigues L, Banach M. Analysis of the physicochemical properties of antimicrobial compositions with zinc oxide nanoparticles. Sci Technol Adv Mater. 2019;20(1):1150–63. https://doi.org/10.1080/14686996.2019.1697617.
Article
CAS
Google Scholar
Deng C, Hu H, Han C, Yang B, Shao G. Shape-controlled synthesis of zinc oxide spherical structures by microwave-assisted chemical aqueous refluxing process. Asian J Chem. 2011;23(5):2309.
CAS
Google Scholar
Illy B, Shollock B, MacManus-Driscoll J, Ryan M. Electrochemical growth of ZnO nanoplates. Nanotechnology. 2005;16(2):320–4. https://doi.org/10.1088/0957-4484/16/2/025.
Article
CAS
Google Scholar
Rao C, Muller A. Cheetham a. The Chemistry of Nanomaterials, Willey. Weinheim: VCH Verlag Gmbtt and Co. KgaA; 2005.
Google Scholar
Habibi R, Daryan JT, Rashidi AM. Shape and size-controlled fabrication of ZnO nanostructures using novel templates. J Exp Nanosci. 2009;4(1):35–45. https://doi.org/10.1080/17458080802680796.
Article
CAS
Google Scholar
Montero-Muñoz M, Ramos-Ibarra J, Rodríguez-Páez J, Ramirez A, Huamaní-Coaquira J. Shape-control of Zinc Oxide nanoparticles: enhancing photocatalytic activity under UV irradiation. J Phys. 2017;792:012068. IOP Publishing.
Kahn ML, Monge M, Collière V, Senocq F, Maisonnat A, Chaudret B. Size-and shape-control of crystalline zinc oxide nanoparticles: a new organometallic synthetic method. Adv Funct Mater. 2005;15(3):458–68. https://doi.org/10.1002/adfm.200400113.
Article
CAS
Google Scholar
Cho S, Jung S-H, Lee K-H. Morphology-controlled growth of ZnO nanostructures using microwave irradiation: from basic to complex structures. J Phys Chem C. 2008;112(33):12769–76. https://doi.org/10.1021/jp803783s.
Article
CAS
Google Scholar
Niederberger M, Garnweitner G. Organic reaction pathways in the nonaqueous synthesis of metal oxide nanoparticles. Chem Eur J. 2006;12(28):7282–302. https://doi.org/10.1002/chem.200600313.
Article
CAS
Google Scholar
Ren F. ZnO based thin films, nano-wires, and nano-belts for photonic and electronic devices and sensors. The Electrochemical Society; 2008.
Andelman T, Gong Y, Polking M, Yin M, Kuskovsky I, Neumark G, et al. Morphological control and photoluminescence of zinc oxide nanocrystals. J Phys Chem B. 2005;109(30):14314–8. https://doi.org/10.1021/jp050540o.
Article
CAS
Google Scholar
Song W, Zhang J, Guo J, Zhang J, Ding F, Li L, et al. Role of the dissolved zinc ion and reactive oxygen species in cytotoxicity of ZnO nanoparticles. Toxicol Lett. 2010;199(3):389–97. https://doi.org/10.1016/j.toxlet.2010.10.003.
Article
CAS
Google Scholar
Yang Z, Zhong W, Au C, Du X, Song H, Qi X, et al. Novel photoluminescence properties of magnetic Fe/ZnO composites: self-assembled ZnO nanospikes on Fe nanoparticles fabricated by hydrothermal method. J Phys Chem C. 2009;113(51):21269–73. https://doi.org/10.1021/jp903130t.
Article
CAS
Google Scholar
Mahamuni PP, Patil PM, Dhanavade MJ, Badiger MV, Shadija PG, Lokhande AC, et al. Synthesis and characterization of zinc oxide nanoparticles by using polyol chemistry for their antimicrobial and antibiofilm activity. Biochem Biophys Rep. 2019;17:71–80. https://doi.org/10.1016/j.bbrep.2018.11.007.
Article
Google Scholar
Hasnidawani J, Azlina H, Norita H, Bonnia N, Ratim S, Ali E. Synthesis of ZnO nanostructures using sol-gel method. Procedia Chem. 2016;19:211–6. https://doi.org/10.1016/j.proche.2016.03.095.
Article
CAS
Google Scholar
Tshabalala M, Dejene B, Swart H. Synthesis and characterization of ZnO nanoparticles using polyethylene glycol (PEG). Phys B Condens Matter. 2012;407(10):1668–71. https://doi.org/10.1016/j.physb.2011.09.113.
Article
CAS
Google Scholar
Giannouli M, Govatsi Κ, Syrrokostas G, Yannopoulos SN, Leftheriotis G. Factors affecting the power conversion efficiency in ZnO DSSCs: Nanowire vs. nanoparticles. Materials. 2018;11(3):411.
Article
Google Scholar
Gomez JL, Tigli O. Zinc oxide nanostructures: from growth to application. J Mater Sci. 2013;48(2):612–24. https://doi.org/10.1007/s10853-012-6938-5.
Article
CAS
Google Scholar
Gerbreders V, Krasovska M, Sledevskis E, Gerbreders A, Mihailova I, Tamanis E, et al. Hydrothermal synthesis of ZnO nanostructures with controllable morphology change. CrystEngComm. 2020;22(8):1346–58. https://doi.org/10.1039/C9CE01556F.
Article
CAS
Google Scholar
Tsuzuki T, McCormick PG. ZnO nanoparticles synthesised by mechanochemical processing. Scr Mater. 2001;44(8–9):1731–4. https://doi.org/10.1016/S1359-6462(01)00793-X.
Article
CAS
Google Scholar
Chen S-J, Li L-H, Chen X-T, Xue Z, Hong J-M, You X-Z. Preparation and characterization of nanocrystalline zinc oxide by a novel solvothermal oxidation route. J Cryst Growth. 2003;252(1–3):184–9. https://doi.org/10.1016/S0022-0248(02)02495-8.
Article
CAS
Google Scholar
Ismail AA, El-Midany A, Abdel-Aal E, El-Shall H. Application of statistical design to optimize the preparation of ZnO nanoparticles via hydrothermal technique. Mater Lett. 2005;59(14–15):1924–8. https://doi.org/10.1016/j.matlet.2005.02.027.
Article
CAS
Google Scholar
Yue S, Yan Z, Shi Y, Ran G. Synthesis of zinc oxide nanotubes within ultrathin anodic aluminum oxide membrane by sol–gel method. Mater Lett. 2013;98:246–9. https://doi.org/10.1016/j.matlet.2013.02.037.
Article
CAS
Google Scholar
Li X, He G, Xiao G, Liu H, Wang M. Synthesis and morphology control of ZnO nanostructures in microemulsions. J Colloid Interface Sci. 2009;333(2):465–73. https://doi.org/10.1016/j.jcis.2009.02.029.
Article
CAS
Google Scholar
Hu X-L, Zhu Y-J, Wang S-W. Sonochemical and microwave-assisted synthesis of linked single-crystalline ZnO rods. Mater Chem Phys. 2004;88(2–3):421–6. https://doi.org/10.1016/j.matchemphys.2004.08.010.
Article
CAS
Google Scholar
Alves T, Kolodziej C, Burda C, Franco A Jr. Effect of particle shape and size on the morphology and optical properties of zinc oxide synthesized by the polyol method. Mater Des. 2018;146:125–33. https://doi.org/10.1016/j.matdes.2018.03.013.
Article
CAS
Google Scholar
Stanković A, Veselinović L, Škapin S, Marković S, Uskoković D. Controlled mechanochemically assisted synthesis of ZnO nanopowders in the presence of oxalic acid. J Mater Sci. 2011;46(11):3716–24. https://doi.org/10.1007/s10853-011-5273-6.
Article
CAS
Google Scholar
Cao Z, Zhang Z, Wang F, Wang G. Synthesis and UV shielding properties of zinc oxide ultrafine particles modified with silica and trimethyl siloxane. Colloids Surf A Physicochem Eng Asp. 2009;340(1–3):161–7. https://doi.org/10.1016/j.colsurfa.2009.03.024.
Article
CAS
Google Scholar
Kumar KM, Mandal BK, Naidu EA, Sinha M, Kumar KS, Reddy PS. Synthesis and characterisation of flower shaped zinc oxide nanostructures and its antimicrobial activity. Spectrochim Acta A Mol Biomol Spectrosc. 2013;104:171–4. https://doi.org/10.1016/j.saa.2012.11.025.
Article
CAS
Google Scholar
Jia W, Dang S, Liu H, Zhang Z, Yu C, Liu X, et al. Evidence of the formation mechanism of ZnO in aqueous solution. Mater Lett. 2012;82:99–101. https://doi.org/10.1016/j.matlet.2012.05.013.
Article
CAS
Google Scholar
Ma C-l, X-d S. Preparation of nanocrystalline metal oxide powders with the surfactant-mediated method. Inorg Chem Commun. 2002;5(10):751–5. https://doi.org/10.1016/S1387-7003(02)00546-4.
Article
Google Scholar
Benhebal H, Chaib M, Salmon T, Geens J, Leonard A, Lambert SD, et al. Photocatalytic degradation of phenol and benzoic acid using zinc oxide powders prepared by the sol–gel process. Alex Eng J. 2013;52(3):517–23. https://doi.org/10.1016/j.aej.2013.04.005.
Article
Google Scholar
Lu C-H, Yeh C-H. Emulsion precipitation of submicron zinc oxide powder. Mater Lett. 1997;33(3–4):129–32. https://doi.org/10.1016/S0167-577X(97)00085-2.
Article
CAS
Google Scholar
Kumar R, Al-Dossary O, Kumar G, Umar A. Zinc oxide nanostructures for NO 2 gas-sensor applications: a review. Nano-Micro Lett. 2015;7(2):97–120. https://doi.org/10.1007/s40820-014-0023-3.
Article
CAS
Google Scholar
Fan Z, Lu JG. Zinc oxide nanostructures: synthesis and properties. J Nanosci Nanotechnol. 2005;5(10):1561–73. https://doi.org/10.1166/jnn.2005.182.
Article
CAS
Google Scholar
Epifani M, Giannini C, Tapfer L, Vasanelli L. Sol–gel synthesis and characterization of Ag and Au nanoparticles in SiO2, TiO2, and ZrO2 thin films. J Am Ceramic Soc. 2000;83(10):2385–2393.
Al Abdullah K, Awad S, Zaraket J, Salame C. Synethesis of ZnO nanopowders by using sol-gel and studying their structural and electrical properties at different temperature energy. Procedia. 2017;119:565–70. https://doi.org/10.1016/j.egypro.2017.07.080.
Article
CAS
Google Scholar
Jurablu S, Farahmandjou M, Firoozabadi T. Sol-gel synthesis of zinc oxide (ZnO) nanoparticles: study of structural and optical properties. J Sci Islam Repub Iran. 2015;26(3):281–5.
Google Scholar
Alwan RM, Kadhim QA, Sahan KM, Ali RA, Mahdi RJ, Kassim NA, et al. Synthesis of zinc oxide nanoparticles via sol–gel route and their characterization. Nanosci Nanotechnol. 2015;5(1):1–6.
Google Scholar
Kumar A. Sol gel synthesis of zinc oxide nanoparticles and their application as nano-composite electrode material for supercapacitor. J Mol Struct. 2020;1220:128654. https://doi.org/10.1016/j.molstruc.2020.128654.
Article
CAS
Google Scholar
Davis K, Yarbrough R, Froeschle M, White J, Rathnayake H. Band gap engineered zinc oxide nanostructures via a sol–gel synthesis of solvent driven shape-controlled crystal growth. RSC Adv. 2019;9(26):14638–48. https://doi.org/10.1039/C9RA02091H.
Article
CAS
Google Scholar
Khan MF, Ansari AH, Hameedullah M, Ahmad E, Husain FM, Zia Q, et al. Sol-gel synthesis of thorn-like ZnO nanoparticles endorsing mechanical stirring effect and their antimicrobial activities: potential role as nano-antibiotics. Sci Rep. 2016;6(1):1–12. https://doi.org/10.1038/srep27689.
Article
CAS
Google Scholar
Droepenu EK, Wee BS, Chin SF, Kok KY, Maligan MF. Zinc oxide nanoparticles synthesismethods and its effect on morphology: a review. 2021;12(3):4261–4292.
López-Cuenca S, Pérez Carrillo L, Rabelero Velasco M, Díaz de León R, Saade H, López R, et al. High-yield synthesis of zinc oxide nanoparticles from bicontinuous microemulsions. J Nanomater. 2011;2011:Article ID 431382. 6 pages. https://doi.org/10.1155/2011/431382.
Yıldırım ÖA, Durucan C. Synthesis of zinc oxide nanoparticles elaborated by microemulsion method. J Alloys Compd. 2010;506(2):944–9. https://doi.org/10.1016/j.jallcom.2010.07.125.
Article
CAS
Google Scholar
Bumajdad A, Madkour M. In situ growth of ZnO nanoparticles in precursor-insensitive water-in-oil microemulsion as soft nanoreactors. Nanoscale Res Lett. 2015;10(1):1–5. https://doi.org/10.1186/s11671-015-0730-9.
Article
CAS
Google Scholar
Sanchez-Dominguez M, Morales-Mendoza G, Rodriguez-Vargas MJ, Ibarra-Malo CC, Rodriguez-Rodriguez AA, Vela-Gonzalez AV, et al. Synthesis of Zn-doped TiO2 nanoparticles by the novel oil-in-water (O/W) microemulsion method and their use for the photocatalytic degradation of phenol. J Environ Chem Eng. 2015;3(4):3037–47. https://doi.org/10.1016/j.jece.2015.03.010.
Article
CAS
Google Scholar
Sarkar D, Tikku S, Thapar V, Srinivasa RS, Khilar KC. Formation of zinc oxide nanoparticles of different shapes in water-in-oil microemulsion. Colloids Surf A Physicochem Eng Asp. 2011;381(1–3):123–9. https://doi.org/10.1016/j.colsurfa.2011.03.041.
Article
CAS
Google Scholar
Hahn Y-B. Zinc oxide nanostructures and their applications. Korean J Chem Eng. 2011;28(9):1797–813. https://doi.org/10.1007/s11814-011-0213-3.
Article
CAS
Google Scholar
Wang ZL. Nanostructures of zinc oxide. Mater Today. 2004;7(6):26–33. https://doi.org/10.1016/S1369-7021(04)00286-X.
Article
CAS
Google Scholar
Baskoutas S. Zinc oxide nanostructures: synthesis and characterization. Multidisciplinary Digital Publishing Institute; 2018.
Mazitova G, Kienskaya K, Ivanova D, Belova I, Butorova I, Sardushkin M. Synthesis and properties of zinc oxide nanoparticles: advances and prospects. Rev J Chem. 2019;9(2):127–52. https://doi.org/10.1134/S207997801902002X.
Article
CAS
Google Scholar
Pomastowski P, Król-Górniak A, Railean-Plugaru V, Buszewski B. Zinc oxide nanocomposites—extracellular synthesis, physicochemical characterization and antibacterial potential. Materials. 2020;13(19):4347. https://doi.org/10.3390/ma13194347.
Article
CAS
Google Scholar
Laurenti M, Verna A, Fontana M, Quaglio M, Porro S. Selective growth of ZnO nanowires on substrates patterned by photolithography and inkjet printing. Appl Phys A. 2014;117(2):901–7. https://doi.org/10.1007/s00339-014-8453-9.
Article
CAS
Google Scholar
Greene LE, Yuhas BD, Law M, Zitoun D, Yang P. Solution-grown zinc oxide nanowires. Inorg Chem. 2006;45(19):7535–43. https://doi.org/10.1021/ic0601900.
Article
CAS
Google Scholar
Abd-Ellah M, Moghimi N, Zhang L, Thomas JP, McGillivray D, Srivastava S, et al. Plasmonic gold nanoparticles for ZnO-nanotube photoanodes in dye-sensitized solar cell application. Nanoscale. 2016;8(3):1658–64. https://doi.org/10.1039/C5NR08029K.
Article
CAS
Google Scholar
Ong CB, Ng LY, Mohammad AW. A review of ZnO nanoparticles as solar photocatalysts: synthesis, mechanisms and applications. Renew Sust Energ Rev. 2018;81:536–51. https://doi.org/10.1016/j.rser.2017.08.020.
Article
CAS
Google Scholar
Parihar V, Raja M, Paulose R. A brief review of structural, electrical and electrochemical properties of zinc oxide nanoparticles. Rev Adv Mater Sci. 2018;53(2):119–30. https://doi.org/10.1515/rams-2018-0009.
Article
CAS
Google Scholar
Mousavi SM, Hashemi SA, Gholami A, Omidifar N, Zarei M, Bahrani S, et al. Bioinorganic synthesis of Polyrhodanine stabilized Fe3O4/graphene oxide in microbial supernatant Media for Anticancer and Antibacterial Applications. Bioinorg Chem Appl. 2021;2021:1–12. https://doi.org/10.1155/2021/9972664.
Article
CAS
Google Scholar
Khoshneviszadeh M, Zargarnezhad S, Ghasemi Y, Gholami A. Evaluation of surface-modified superparamagnetic iron oxide nanoparticles to optimize bacterial immobilization for bio-separation with the least inhibitory effect on microorganism activity. Nanosci Nanotechnol-Asia. 2020;10(2):166–74. https://doi.org/10.2174/2210681208666181015120346.
Article
CAS
Google Scholar
Nurmikkoy A, Gunshorz RL. Blue and green semiconductor lasers: a status report, Semiconductor Science and Technology. 1997;12(11):1337. URL: https://iopscience.iop.org/article/10.1088/0268-1242/12/11/003/meta.
Gholami A, Mousavi SM, Hashemi SA, Ghasemi Y, Chiang W-H, Parvin N. Current trends in chemical modifications of magnetic nanoparticles for targeted drug delivery in cancer chemotherapy. Drug Metab Rev. 2020;52(1):205–24. https://doi.org/10.1080/03602532.2020.1726943.
Article
CAS
Google Scholar
Hou X, Zhou F, Yu B, Liu W. PEG-mediated synthesis of ZnO nanostructures at room temperature. Mater Lett. 2007;61(11–12):2551–5. https://doi.org/10.1016/j.matlet.2006.09.059.
Article
CAS
Google Scholar
Thirugnanam T. Effect of polymers (PEG and PVP) on sol-gel synthesis of microsized zinc oxide. J Nanomater. 2013;2013:1–7. https://doi.org/10.1155/2013/362175.
Article
CAS
Google Scholar
Sooksaen P, Keawpimol A, Deeniam P, Boonkum P. Surface modification of zinc oxide nanoparticles using polyethylene glycol under microwave radiation. Key Eng Mater. 2015;659:609–14. https://doi.org/10.4028/www.scientific.net/KEM.659.609.
Article
Google Scholar
Bagheri M, Rabieh S. Preparation and characterization of cellulose-ZnO nanocomposite based on ionic liquid ([C 4 mim] cl). Cellulose. 2013;20(2):699–705. https://doi.org/10.1007/s10570-012-9857-3.
Article
CAS
Google Scholar
Yu H-Y, Chen G-Y, Wang Y-B, Yao J-M. A facile one-pot route for preparing cellulose nanocrystal/zinc oxide nanohybrids with high antibacterial and photocatalytic activity. Cellulose. 2015;22(1):261–73. https://doi.org/10.1007/s10570-014-0491-0.
Article
CAS
Google Scholar
Ali A, Ambreen S, Maqbool Q, Naz S, Shams MF, Ahmad M, et al. Zinc impregnated cellulose nanocomposites: synthesis, characterization and applications. J Phys Chem Solids. 2016;98:174–82. https://doi.org/10.1016/j.jpcs.2016.07.007.
Article
CAS
Google Scholar
Mocanu A, Isopencu G, Busuioc C, Popa O-M, Dietrich P, Socaciu-Siebert L. Bacterial cellulose films with ZnO nanoparticles and propolis extracts: synergistic antimicrobial effect. Sci Rep. 2019;9(1):1–10. https://doi.org/10.1038/s41598-019-54118-w.
Article
CAS
Google Scholar
Abootalebi SN, Saeed A, Gholami A, Mohkam M, Kazemi A, Nezafat N, et al. Screening, characterization and production of thermostable alpha-amylase produced by a novel thermophilic bacillus megaterium isolated from pediatric intensive care unit. J Environ Treat Tech. 2020;8(3):952–60.
Google Scholar
Lungu M-V, Vasile E, Lucaci M, Pătroi D, Mihăilescu N, Grigore F, et al. Investigation of optical, structural, morphological and antimicrobial properties of carboxymethyl cellulose capped Ag-ZnO nanocomposites prepared by chemical and mechanical methods. Materials Characterization. 2016;120:69–81.
Hussein J, El-Banna M, Razik TA, El-Naggar ME. Biocompatible zinc oxide nanocrystals stabilized via hydroxyethyl cellulose for mitigation of diabetic complications. International journal of biological macromolecules. 2018;107:748–54.
Bajwa DS, Shojaeiarani J, Liaw JD, Bajwa SG. Role of Hybrid Nano-Zinc Oxide and Cellulose Nanocrystals on the Mechanical, Thermal, and Flammability Properties of Poly (Lactic Acid) Polymer. Journal of Composites Science. 2021;5(2):43.
Elemike EE, Onwudiwe DC, Mbonu JI. Facile synthesis of cellulose–ZnO-hybrid nanocomposite using Hibiscus rosasinensis leaf extract and their antibacterial activities. Applied Nanoscience. 2021;11(4):1349–58.
Tanino R, Amano Y, Tong X, Sun R, Tsubata Y, Harada M, et al. Anticancer activity of ZnO nanoparticles against human small-cell lung Cancer in an Orthotopic mouse model. Mol Cancer Ther. 2020;19(2):502–12. https://doi.org/10.1158/1535-7163.MCT-19-0018.
Article
CAS
Google Scholar
Avval ZM, Malekpour L, Raeisi F, Babapoor A, Mousavi SM, Hashemi SA, et al. Introduction of magnetic and supermagnetic nanoparticles in new approach of targeting drug delivery and cancer therapy application. Drug Metab Rev. 2020;52(1):157–84. https://doi.org/10.1080/03602532.2019.1697282.
Article
Google Scholar
Shen J, Yang D, Zhou X, Wang Y, Tang S, Yin H, et al. Role of autophagy in zinc oxide nanoparticles-induced apoptosis of mouse LEYDIG cells. Int J Mol Sci. 2019;20(16):4042. https://doi.org/10.3390/ijms20164042.
Article
CAS
Google Scholar
Yung MM, Fougères P-A, Leung YH, Liu F, Djurišić AB, Giesy JP, et al. Physicochemical characteristics and toxicity of surface-modified zinc oxide nanoparticles to freshwater and marine microalgae. Sci Rep. 2017;7(1):1–14. https://doi.org/10.1038/s41598-017-15988-0.
Article
CAS
Google Scholar
Yu J, Baek M, Chung H, Choi S. Effects of physicochemical properties of zinc oxide nanoparticles on cellular uptake. In: Journal of Physics: Conference Series. IOP Publishing; 2011.
Google Scholar
Jiang J, Pi J, Cai J. The advancing of zinc oxide nanoparticles for biomedical applications. Bioinorg Chem Appl. 2018;2018:1–18. https://doi.org/10.1155/2018/1062562.
Article
CAS
Google Scholar
Gholami A, Emadi F, Amini A, Shokripour M, Chashmpoosh M, Omidifar N. Functionalization of graphene oxide Nanosheets can reduce their cytotoxicity to dental pulp stem cells. J Nanomater. 2020;2020:1–14. https://doi.org/10.1155/2020/6942707.
Article
CAS
Google Scholar
Gholami A, Hashemi SA, Yousefi K, Mousavi SM, Chiang W-H, Ramakrishna S, et al. 3D nanostructures for tissue engineering, cancer therapy, and gene delivery. J Nanomater. 2020;2020:1–24. https://doi.org/10.1155/2020/1852946.
Article
CAS
Google Scholar
Gholami A, Rasoul-amini S, Ebrahiminezhad A, Seradj SH, Ghasemi Y. Lipoamino acid coated superparamagnetic iron oxide nanoparticles concentration and time dependently enhanced growth of human hepatocarcinoma cell line (Hep-G2). J Nanomater. 2015;2015:1–9. https://doi.org/10.1155/2015/451405.
Article
CAS
Google Scholar
Raee MJ, Ebrahiminezhad A, Gholami A, Ghoshoon MB, Ghasemi Y. Magnetic immobilization of recombinant E. coli producing extracellular asparaginase: an effective way to intensify downstream process. Sep Sci Technol. 2018;53(9):1397–404. https://doi.org/10.1080/01496395.2018.1445110.
Article
CAS
Google Scholar
Mousavi SM, Zarei M, Hashemi SA, Babapoor A, Amani AM. A conceptual review of rhodanine: current applications of antiviral drugs, anticancer and antimicrobial activities. Artif Cells Nanomedicine Biotechnol. 2019;47(1):1132–48. https://doi.org/10.1080/21691401.2019.1573824.
Article
CAS
Google Scholar
Wahab R, Kaushik N, Khan F, Kaushik NK, Choi EH, Musarrat J, et al. Self-styled ZnO nanostructures promotes the cancer cell damage and supresses the epithelial phenotype of glioblastoma. Sci Rep. 2016;6(1):19950. https://doi.org/10.1038/srep19950.
Article
CAS
Google Scholar
Ou C, Zhang Y, Pan D, Ding K, Zhang S, Xu W, et al. Zinc porphyrin–polydopamine core–shell nanostructures for enhanced photodynamic/photothermal cancer therapy. Mater Chem Front. 2019;3(9):1786–92. https://doi.org/10.1039/C9QM00197B.
Article
CAS
Google Scholar
Gholami A, Dabbaghmanesh MH, Ghasemi Y, Talezadeh P, Koohpeyma F, Montazeri-Najafabady N. Probiotics ameliorate pioglitazone-associated bone loss in diabetic rats. Diabetol Metab Syndr. 2020;12(1):1–10. https://doi.org/10.1186/s13098-020-00587-3.
Article
CAS
Google Scholar
Alkaladi A, Abdelazim AM, Afifi M. Antidiabetic activity of zinc oxide and silver nanoparticles on streptozotocin-induced diabetic rats. Int J Mol Sci. 2014;15(2):2015–23. https://doi.org/10.3390/ijms15022015.
Article
CAS
Google Scholar
San TK. The current and future perspectives of zinc oxide nanoparticles in the treatment of diabetes mellitus. Life Sci. 2019;239:117011. https://doi.org/10.1016/j.lfs.2019.117011.
Article
CAS
Google Scholar
Siddiqui SA, Or Rashid M, Uddin M, Robel FN, Hossain MS, Haque M, et al. Biological efficacy of zinc oxide nanoparticles against diabetes: a preliminary study conducted in mice. Biosci Rep. 2020;40(4):BSR20193972.
Article
CAS
Google Scholar
Umrani RD, Paknikar KM. Zinc oxide nanoparticles show antidiabetic activity in streptozotocin-induced type 1 and 2 diabetic rats. Nanomedicine. 2014;9(1):89–104. https://doi.org/10.2217/nnm.12.205.
Article
CAS
Google Scholar
Bala N, Saha S, Chakraborty M, Maiti M, Das S, Basu R, et al. Green synthesis of zinc oxide nanoparticles using Hibiscus subdariffa leaf extract: effect of temperature on synthesis, anti-bacterial activity and anti-diabetic activity. RSC Adv. 2015;5(7):4993–5003. https://doi.org/10.1039/C4RA12784F.
Article
CAS
Google Scholar
Othman MS, Hafez MM, Moneim AEA. The potential role of zinc oxide nanoparticles in MicroRNAs dysregulation in STZ-induced type 2 diabetes in rats. Biol Trace Elem Res. 2019;197(2):1–13. https://doi.org/10.1007/s12011-019-02012-x.
Article
CAS
Google Scholar
Canta M, Cauda V. The investigation of the parameters affecting the ZnO nanoparticle cytotoxicity behaviour: a tutorial review. Biomater Sci. 2020;8(22):6157–74. https://doi.org/10.1039/D0BM01086C.
Article
CAS
Google Scholar
Mu Q, David CA, Galceran J, Rey-Castro C, Krzemiński Ł, Wallace R, et al. Systematic investigation of the physicochemical factors that contribute to the toxicity of ZnO nanoparticles. Chem Res Toxicol. 2014;27(4):558–67. https://doi.org/10.1021/tx4004243.
Article
CAS
Google Scholar
da Silva BL, Abuçafy MP, Manaia EB, Junior JAO, Chiari-Andréo BG, Pietro RCR, et al. Relationship between structure and antimicrobial activity of zinc oxide nanoparticles: an overview. Int J Nanomedicine. 2019;14:9395–410. https://doi.org/10.2147/IJN.S216204.
Article
Google Scholar
Tech JET. Investigating the activity of antioxidants activities content in Apiaceae and to study antimicrobial and insecticidal activity of antioxidant by using SPME Fiber assembly carboxen/polydimethylsiloxane (CAR/PDMS). J Environ Treat Tech. 2020;8(1):214–24.
Google Scholar
Mousavi SM, Zarei M, Hashemi SA, Ramakrishna S, Chiang W-H, Lai CW, et al. Gold nanostars-diagnosis, bioimaging and biomedical applications. Drug Metab Rev. 2020;52(2):299–318. https://doi.org/10.1080/03602532.2020.1734021.
Article
CAS
Google Scholar
Amna T. Shape-controlled synthesis of three-dimensional zinc oxide nanoflowers for disinfection of food pathogens. Zeitschrift für Naturforschung C. 2018;73(7–8):297–301. https://doi.org/10.1515/znc-2017-0195.
Article
CAS
Google Scholar
Nagajyothi P, Cha SJ, Yang IJ, Sreekanth T, Kim KJ, Shin HM. Antioxidant and anti-inflammatory activities of zinc oxide nanoparticles synthesized using Polygala tenuifolia root extract. J Photochem Photobiol B Biol. 2015;146:10–7. https://doi.org/10.1016/j.jphotobiol.2015.02.008.
Article
CAS
Google Scholar
Agarwal H, Shanmugam V. A review on anti-inflammatory activity of green synthesized zinc oxide nanoparticle: mechanism-based approach. Bioorg Chem. 2020;94:103423. https://doi.org/10.1016/j.bioorg.2019.103423.
Article
CAS
Google Scholar
Mobarez E, Azoz H, Alkalamawy N, Nada A-F. Evaluation the effectiveness of green zinc oxide nanoparticles on the anti-inflammatory effect of dexamethasone and its side effects in rats. SVU-Int J Vet Sci. 2018;1(1):25–54. https://doi.org/10.21608/svu.2018.17924.
Article
Google Scholar
Abhinaya SR, Padmini R. Biofabrication of zinc oxide nanoparticles using pterocarpus marsupium and its biomedical applications. Asian J Pharm Clin Res. 2019;12(1):245–9. https://doi.org/10.22159/ajpcr.2019.v12i1.28682.
Article
CAS
Google Scholar
Ali SS, Morsy R, El-Zawawy NA, Fareed MF, Bedaiwy MY. Synthesized zinc peroxide nanoparticles (ZnO2-NPs): a novel antimicrobial, anti-elastase, anti-keratinase, and anti-inflammatory approach toward polymicrobial burn wounds. Int J Nanomedicine. 2017;12:6059–73. https://doi.org/10.2147/IJN.S141201.
Article
CAS
Google Scholar
Gholami A, Emadi F, Nazem M, Aghayi R, Khalvati B, Amini A, et al. Expression of key apoptotic genes in hepatocellular carcinoma cell line treated with etoposide-loaded graphene oxide. J Drug Deliv Sci Technol. 2020;57:101725. https://doi.org/10.1016/j.jddst.2020.101725.
Article
CAS
Google Scholar
Fakhar-e-Alam M, Rahim S, Atif M, Aziz MH, Malick MI, Zaidi S, et al. ZnO nanoparticles as drug delivery agent for photodynamic therapy. Laser Phys Lett. 2013;11(2):025601. https://doi.org/10.1088/1612-2011/11/2/025601.
Article
CAS
Google Scholar
Liu J, Ma X, Jin S, Xue X, Zhang C, Wei T, et al. Zinc oxide nanoparticles as adjuvant to facilitate doxorubicin intracellular accumulation and visualize pH-responsive release for overcoming drug resistance. Mol Pharm. 2016;13(5):1723–30. https://doi.org/10.1021/acs.molpharmaceut.6b00311.
Article
CAS
Google Scholar
Kim H, Mondal S, Bharathiraja S, Manivasagan P, Moorthy MS, Oh J. Optimized Zn-doped hydroxyapatite/doxorubicin bioceramics system for efficient drug delivery and tissue engineering application. Ceram Int. 2018;44(6):6062–71. https://doi.org/10.1016/j.ceramint.2017.12.235.
Article
CAS
Google Scholar
Peng H, Cui B, Li G, Wang Y, Li N, Chang Z, et al. A multifunctional β-CD-modified Fe3O4@ ZnO: Er3+, Yb3+ nanocarrier for antitumor drug delivery and microwave-triggered drug release. Mater Sci Eng C. 2015;46:253–63. https://doi.org/10.1016/j.msec.2014.10.022.
Article
CAS
Google Scholar
Zhang Y, R Nayak T, Hong H, Cai W. Biomedical applications of zinc oxide nanomaterials. Curr Mol Med. 2013;13(10):1633–45. https://doi.org/10.2174/1566524013666131111130058.
Article
CAS
Google Scholar
Nie L, Gao L, Feng P, Zhang J, Fu X, Liu Y, et al. Three-dimensional functionalized tetrapod-like ZnO nanostructures for plasmid DNA delivery. Small. 2006;2(5):621–5. https://doi.org/10.1002/smll.200500193.
Article
CAS
Google Scholar
Nie L, Gao L, Yan X, Wang T. Functionalized tetrapod-like ZnO nanostructures for plasmid DNA purification, polymerase chain reaction and delivery. Nanotechnology. 2006;18(1):015101. https://doi.org/10.1088/0957-4484/18/1/015101.
Article
CAS
Google Scholar
Zhang P, Liu W. ZnO QD@ PMAA-co-PDMAEMA nonviral vector for plasmid DNA delivery and bioimaging. Biomaterials. 2010;31(11):3087–94. https://doi.org/10.1016/j.biomaterials.2010.01.007.
Article
CAS
Google Scholar
Boroumand Moghaddam A, Moniri M, Azizi S, Abdul Rahim R, Bin Ariff A, Navaderi M, et al. Eco-friendly formulated zinc oxide nanoparticles: induction of cell cycle arrest and apoptosis in the MCF-7 cancer cell line. Genes. 2017;8(10):281. https://doi.org/10.3390/genes8100281.
Article
CAS
Google Scholar
Liu S, Jia H, Yang J, Pan J, Liang H, Zeng L, et al. Zinc coordination substitute amine: a noncationic platform for efficient and safe gene delivery. ACS Macro Lett. 2018;7(7):868–74. https://doi.org/10.1021/acsmacrolett.8b00374.
Article
CAS
Google Scholar
Bai D-P, Zhang X-F, Zhang G-L, Huang Y-F, Gurunathan S. Zinc oxide nanoparticles induce apoptosis and autophagy in human ovarian cancer cells. Int J Nanomedicine. 2017;12:6521–35. https://doi.org/10.2147/IJN.S140071.
Article
CAS
Google Scholar
Vacanti JP, Langer R. Tissue engineering: the design and fabrication of living replacement devices for surgical reconstruction and transplantation. Lancet. 1999;354:S32–S4. https://doi.org/10.1016/S0140-6736(99)90247-7.
Article
Google Scholar
Hollister SJ. Porous scaffold design for tissue engineering. Nat Mater. 2005;4(7):518–24. https://doi.org/10.1038/nmat1421.
Article
CAS
Google Scholar
Wang P, Zhao L, Liu J, Weir MD, Zhou X, Xu HH. Bone tissue engineering via nanostructured calcium phosphate biomaterials and stem cells. Bone Res. 2014;2(1):1–13. https://doi.org/10.1038/boneres.2014.17.
Article
CAS
Google Scholar
Amna T, Hassan MS, Sheikh FA, Lee HK, Seo K-S, Yoon D, et al. Zinc oxide-doped poly (urethane) spider web nanofibrous scaffold via one-step electrospinning: a novel matrix for tissue engineering. Appl Microbiol Biotechnol. 2013;97(4):1725–34. https://doi.org/10.1007/s00253-012-4353-0.
Article
CAS
Google Scholar
Park JK, Kim YJ, Yeom J, Jeon JH, Yi GC, Je JH, et al. The topographic effect of zinc oxide nanoflowers on osteoblast growth and osseointegration. Adv Mater. 2010;22(43):4857–61. https://doi.org/10.1002/adma.201002255.
Article
CAS
Google Scholar
Augustine R, Dominic EA, Reju I, Kaimal B, Kalarikkal N, Thomas S. Investigation of angiogenesis and its mechanism using zinc oxide nanoparticle-loaded electrospun tissue engineering scaffolds. RSC Adv. 2014;4(93):51528–36. https://doi.org/10.1039/C4RA07361D.
Article
CAS
Google Scholar
Barui AK, Kotcherlakota R, Patra CR. Biomedical applications of zinc oxide nanoparticles. In: Inorganic frameworks as smart nanomedicines; 2018. p. 239–78. https://doi.org/10.1016/B978-0-12-813661-4.00006-7.
Chapter
Google Scholar
Laurenti M, Cauda V. ZnO nanostructures for tissue engineering applications. Nanomaterials. 2017;7(11):374. https://doi.org/10.3390/nano7110374.
Article
CAS
Google Scholar
Erathodiyil N, Ying JY. Functionalization of inorganic nanoparticles for bioimaging applications. Acc Chem Res. 2011;44(10):925–35. https://doi.org/10.1021/ar2000327.
Article
CAS
Google Scholar
Wolfbeis OS. An overview of nanoparticles commonly used in fluorescent bioimaging. Chem Soc Rev. 2015;44(14):4743–68. https://doi.org/10.1039/C4CS00392F.
Article
CAS
Google Scholar
Mukherjee S, Chowdhury D, Kotcherlakota R, Patra S. Potential theranostics application of bio-synthesized silver nanoparticles (4-in-1 system). Theranostics. 2014;4(3):316–35. https://doi.org/10.7150/thno.7819.
Article
Google Scholar
Xiong HM. ZnO nanoparticles applied to bioimaging and drug delivery. Adv Mater. 2013;25(37):5329–35. https://doi.org/10.1002/adma.201301732.
Article
CAS
Google Scholar
Hong H, Wang F, Zhang Y, Graves SA, Eddine SBZ, Yang Y, et al. Red fluorescent zinc oxide nanoparticle: a novel platform for cancer targeting. ACS Appl Mater Interfaces. 2015;7(5):3373–81. https://doi.org/10.1021/am508440j.
Article
CAS
Google Scholar