Kumar SV, Tarun P, Kumar TA. Transdermal drug delivery system for non-steroidal anti inflammatory drugs: a review. Indo AM J Pharm. 2013;3(5):3588–605.
Google Scholar
Naik A, Kalia YN, Guy RH. Transdermal drug delivery: overcoming the skin’s barrier function. Pharmaceut Sci Tech. 2000;3(9):318–26.
Article
CAS
Google Scholar
Prausnitz MR, Langer R. Transdermal drug delivery. Nat Biotechnol. 2008;26(11):1261–8.
Article
CAS
Google Scholar
Nair SS. Strategies to improve the potential of transdermal devices by enhancing the skin permeation of therapeutic entities. J. Drug deliv. Ther. 2019;9(3-S):972–6.
CAS
Google Scholar
Herwadkar A, Banga AK. Peptide and protein transdermal drug delivery. Drug Discov Today Technol. 2012;9(2):147–54.
Article
Google Scholar
Singh TRR, Garland MJ, Cassidy CM, Migalska K, Demir YK, Ryan SAE, Woolfson D, Donnelly RF. Microporation techniques for enhanced delivery of therapeutic agents. Recent Pat Drug Deliv Formul. 2010;4(1):1–17.
Article
CAS
Google Scholar
Vemulapalli V, Bai Y, Kalluri H, Herwadkar A, Kim H, Davis SP, Friden PM, Banga AK. In vivo iontophoretic delivery of salmon calcitonin across microporated skin. J Pharm Sci. 2012;101(8):2861–9.
Article
CAS
Google Scholar
Sachdeva V, Banga AK. Microneedles and their applications. Recent Pat. Drug Deliv. Formul. 2011;5(2):95–132.
Article
CAS
Google Scholar
Whiteside PJD, Chininis JA, Schellenberg MW, Qian C, Hunt HK. Increased epidermal laser fluence through simultaneous ultrasonic microporation. Proc of SPIE. 2016;9706:97061E–6.
Article
Google Scholar
Ibrahim O, Munavalli GS, Dover JS. Radiofrequency with microneedling. Advances in Cosmetic Surgery. 2018;1:109–15.
Article
Google Scholar
Pathan IB, Setty CM. Chemical penetration enhancers for transdermal drug delivery systems. Trop J Pharm Res. 2009;8(2):173–9.
Article
CAS
Google Scholar
Curley SA. Radiofrequency ablation of malignant liver tumors. Ann Surg Oncol. 2003;10:338–47.
Article
Google Scholar
Gold MH, Biron JA. Treatment of acne scars by fractional bipolar radiofrequency energy. J Cosmet Laser Ther. 2012;87(6):172–8.
Article
Google Scholar
Kim J, Jang JH, Lee JH, Choi JK, Park WR, Bae IH, Bae J, Park JW. Enhanced topical delivery of small hydrophilic or lipophilic active agents and epidermal growth factor by fractional radiofrequency microporation. Pharm Res. 2012;29(7):2017–29.
Article
CAS
Google Scholar
Lee WR, Shen SC, Sun CK, Aljuffali IA, Suen SY, Lin YK, Wang JJ, Fang JY. Fractional thermolysis by bipolar radiofrequency facilitates cutaneous delivery of peptide and siRNA with minor loss of barrier function. Pharm Res. 2015;32(5):1704–13.
Article
CAS
Google Scholar
Levin G, Gershonowitz A, Sacks H, Stern M, Sherman A, Rudaev S, Zivin I, Phillip M. Transdermal delivery of human growth hormone through RF-microchannels. Pharm Res. 2005;22(4):550–5.
Article
CAS
Google Scholar
Mitragotri S. Mechanical disruption of skin barrier for vaccine delivery. Drug Deliv Syst. 2012;27(3):202–12.
Article
CAS
Google Scholar
Sintov AC, Krymberk I, Daniel D, Hannan T, Sohn Z, Levin G. Radiofrequency-driven skin microchanneling as a new way for electrically assisted transdermal delivery of hydrophilic drugs. J Control Release. 2003;89(2):311–20.
Article
CAS
Google Scholar
Doke SK, Dhawale SC. Alternatives to animal testing: a review. Saudi Pharm J. 2015;23(3):223–9.
Article
Google Scholar
Kano S, Todo H, Furui K, Kenichi S, Tokudome Y, Hashimoto F, Kojima H, Sugibayashi K. Comparison of several reconstructed cultured human skin models by microscopic observation: their usefulness as an alternative membrane for skin in drug permeation experiments. AATEX. 2011;16(2):51–8.
Google Scholar
Rissmann R, Oudshoorn MHM, Hennink WE, Ponec M, Bouwstra JA. Skin barrier disruption by acetone: observations in a hairless mouse skin model. Arch Dermatol Res. 2009;301(8):609–13.
Article
CAS
Google Scholar
Banga AK. Microporation applications for enhancing drug delivery. Expert Opin Drug Deliv. 2009;6(4):343–54.
Article
CAS
Google Scholar
Hrabchak C, Flynn L, Woodhouse KA. Biological skin substitutes for wound cover and closure. Expert Rev Med Devices. 2006;3(3):373–85.
Article
CAS
Google Scholar
Santoro MM, Gaudino G. Cellular and molecular facets of keratinocyte reepithelization during. Exp Cell Res. 2005;304(1):274–86.
Article
CAS
Google Scholar
Kam Y, Sacks H, Kaplan KM, Stern M, Levin G. Radio frequency-microchannels for transdermal delivery: characterization of skin recovery and delivery window. Pharmacol Pharm. 2012;3(1):20–8.
Article
CAS
Google Scholar
Qi P, Caoa M, Songa L, Chena C, Liua M, Li N, Wua D, Penga J, Hub G, Zhao J. The biological activity of cationic liposomes in drug delivery and toxicity test in animal models. Environ Toxicol Pharmacol. 2016;47:159–64.
Article
CAS
Google Scholar
Middelkoop E, Bogaerdt AJ, Lamme EN, Hoekstra MJ, Brandsma K, Ulrich MMW. Porcine wound models for skin substitution and burn treatment. Biomaterials. 2004;25(9):1559–67.
Article
CAS
Google Scholar
Salunkhe SS, Bhatia NM, Pokharkar VB, Thorat JD, Bhatia MS. Topical delivery of idebenone using nanostructured lipid carriers: evaluations of sun-protection and anti-oxidant effects. Int J Pharm Investig. 2013;43(4):287–303.
Article
CAS
Google Scholar
Huang S, Huang G. Preparation and drug delivery of dextran-drug complex. Drug Deliv. 2019;26(1):252–61.
Article
CAS
Google Scholar
Boudry I, Blanck O, Cruz C, Blanck M, Vallet V, Bazire A, Capt A, Josse D, Lallement G. Percutaneous penetration and absorption of parathion using human and pig skin models in vitro and human skin grafted onto nude mouse skin model in vivo. J Appl Toxicol. 2008;28(5):645–57.
Article
CAS
Google Scholar