Guo X, Huang L. Recent advances in non-viral vectors for gene delivery. Acc Chem Research. 2012;45(7):971–9.
Article
CAS
Google Scholar
Jones CH, Chen CK, Ravikrishnan A, Rane S, Pfeifer BA. Overcoming nonviral gene delivery barriers: perspective and future. Mol. Pharmaceutics. 2013;10:4082–98.
CAS
Google Scholar
Friedmann T, Roblin R. Gene therapy for human genetic disease. Science. 1972;175:949–55.
Article
CAS
Google Scholar
Han S-O, Mahato RI, Sung YK, Kim SW. Development of biomaterials for gene therapy. Mol Therapy. 2000;2:302–17.
Article
CAS
Google Scholar
Mahato RI, Smith LC, Rolland A. Pharmaceutical perspectives of nonviral gene therapy. Adv Genet. 1999;41:95–156.
Article
CAS
Google Scholar
Park, D W, Hoffman, A S, Pu, S, Stayton, P S, Design and development of polymers for gene delivery Nature Rev Drug Discovery 2005; 4:581–593.
Nayerossadat N, Maedeh T, Ali PA. Viral and nonviral delivery systems for gene delivery. Adv Biomed Res. 2012;1:27–31.
Article
CAS
Google Scholar
Mali S. Delivery systems for gene therapy. Indian J Human Genet. 2013;19:3–8.
Article
CAS
Google Scholar
Moss B, Smith GL, Gerin JL, Purcell RH. Live recombinant vaccinia virus protects chimpanzees against hepatitis B. Nature. 1984;311(5981):67–9.
Article
CAS
Google Scholar
Yellepeddi V K, Vectors for Non-viral Gene Delivery- Clinical and Biomedical Applications. Austin Therapeutics, ISSN: 2472–3673. 2015; 2(1):1014.
Kim S W, Biomaterials to gene delivery. J Control Release, 2011; 155(2):116–118. Doi:https://doi.org/10.1016/j.jconrel.2011.03.023. PMID:21457735
Kamimura K, Suda T, Zhang G, Liu D. Advances in gene delivery systems. Pharm Med. 2011;25(5):293–306.
Article
Google Scholar
van Nies P, Westerlaken I, Blanken D, Salas M, Mencia M, Danelon C. Self-replication of DNA by its encoded proteins in liposome-based synthetic cells. Nat Commun. 2018;9:1583–5.
Article
CAS
Google Scholar
Singh BN, Prateeksha A, Gupta VK, Chen J, Atanasov AG. Organic nanoparticle-based combinatory approaches for gene therapy. Trends Biotechnol. 2017;35(12):1121–4.
Article
CAS
Google Scholar
Nimesh S, Halappanavar S, Kaushik N K, Kumar P, Advances in gene delivery systems. Biomed Res Int. 2015;610342 doi: https://doi.org/10.1155/2015/610342 PMID: 25918717.
Lodish H, Berk A, Zipursky S L, Matsudaira P, Baltimore D, Darnell J, Molecular Cell Biology, 4th ed., New York, W. H. Freeman; 2000. ISBN-10: 0–7167–3136-3. www.ncbi.nlm.nih. gov/books/NBK21599.
Resnik B, Langer PJ. Human germline gene therapy reconsidered. Hum. Gene Ther. 2001;12:1449–58.
Article
CAS
Google Scholar
McDonough PG. The ethics of somatic and germline gene therapy. Ann N Y Acad Sci. 1997;816:378–82.
Article
CAS
Google Scholar
Suhonen J, Ray J, Bloemer U, Gage F H, Kaspar B, Exo vivo and in vivo gene delivery to the brain. Curr Protoc Hum Genet. 2006; Chapter 13: Unit 13.3. doi:https://doi.org/10.1002/0471142905.hg1303s51. PMID: 18428389.
Herrero MJ, Sabater L, Guenechea G, Sendra L, Montilla AI, Abargues R, Navarro V, Alino SF. DNA delivery to ex vivo human liver segments. Gene Ther. 2012;19:504–12.
Article
CAS
Google Scholar
Takefumi S, Akira I, Shin E, Shiro B. In situ gene therapy for prostate cancer. Curr Gene Ther. 2005;5:111–9.
Article
Google Scholar
Hu WW, Wang Z, Hollister SJ, Krebsbach PH. Localized viral vector delivery to enhance in situ regenerative gene therapy. Gene Ther. 2007;14:891–901.
Article
CAS
Google Scholar
Davis PB, Cooper MJ. Vectors for airway gene delivery. AAPS J. 2007;9:2–5.
Article
Google Scholar
Augusta G, Gonçalves R, de Melo R, Paiva A. Gene therapy: advances, challenges and perspectives. Einstein. 2017;15(3):369–75.
Article
Google Scholar
Wivel NA, Wilson JM. Method of gene delivery. Oncology Clinics North America. 1998;12(3):483–501.
Article
CAS
Google Scholar
Crooke ST. An overview of progress in antisense therapeutics. Antisense Nucleic Acid Drug Dev. 1998;8:115–22.
Article
CAS
Google Scholar
Stull RA, Szoka FC Jr. Antigene, ribozyme and aptamer nucleic acid drugs: Progress and prospects. Pharm Res. 1995;12:465–83.
Article
CAS
Google Scholar
Patil SD, Rhodes DG, Burgess DJ. DNA-based therapeutics and DNA delivery systems: a comprehensive review. AAPS J. 2005;7(1):E61–77.
Article
CAS
Google Scholar
Siddhesh DP, David GR, Diane JB. DNA-based therapeutics and DNA delivery systems: a comprehensive review. AAPS J. 2005;7(1):61–77.
Article
Google Scholar
Mogler, MA, Kamrud, KI, RNA-based viral vectors. Expert Rev Vaccines 2015; 14(2):283–312. doi: https://doi.org/10.1586/14760584.2015.979798. PMID: 25382613.
DiGiusto DL, Krishnan A, Li H, Li S, Rao A, Mi S, Yam P, Stinson S, Kalos M, Simon J, Lacey F, Yee JK, Li M, Couture L, Hsu D, Forman SJ, Rossi JJ, Zaia JA. RNA-based gene therapy for HIV with lentiviral vector-modified CD34(+) cells in patients undergoing transplantation for AIDS-related lymphoma. Sci Transl Med. 2010;2(36):36–43.
Article
CAS
Google Scholar
Howells A, Marelli G, Lemoine NR, Wang Y, Oncolytic virus-interaction of virus and tumor cells in the battle to eliminate cancer. Front Oncol 2017; http://doi.org/https://doi.org/10.3389/fonc.2017.00195.
Choi I-K, Lee J-S, Zhang S-N, Park J, Lee K-M, Sonn CH, Yun C-O. Oncolytic adenovirus co-expressing IL-12 and IL-18 improves tumor-specific immunity via differentiation of T cells expressing IL-12Rß2 or IL-18Rα. Gene Ther. 2011;18(9):942–7.
Article
CAS
Google Scholar
Yoon A-R, Hong JW, Yun C-O. Adenovirus-mediated decorin expression induces cancer cell death through activation of p53 and mitochondrial apoptosis. Oncotarget. 2017;8(44):1–20.
Article
CAS
Google Scholar
Choi JW, Lee YS, Yun C-O, Kim SW. Polymeric oncolytic adenovirus for cancer gene therapy. J Control Release. 2015;10(219):181–91. https://doi.org/10.1016/jconrel.2015.10.009 Epub 2015 Oct 23.
Article
Google Scholar
Choi I-K, Li Y, Oh E, Kim J, Yun C-O, Oncolytic adenovirus expressing IL-23 and p35 elicits IFN-ɤ-and TNF-α-co-producing T cell-mediated antitumor immunity, PLoS One, 2013; 8(7):e67512. https://doi.org/https://doi.org/10.1371/journal.pone.0067512.
Hernandez-Gea V, Toffanin S, Friedman SL, Llovet JM. Role of the microenvironment in the pathogenesis and treatment of hepatocellular carcinoma. Gastroenterology. 2013;144:512–27.
Article
Google Scholar
El-Aneed A. Current strategies in cancer gene therapy. Europ J Pharmacol. 2004;498:1–8.
Article
CAS
Google Scholar
Baban CK, Cronin M, O’Hanlon D, O’SullivanG C, Tangney M. Bacteria as vectors for gene therapy of cancer. Bioengineered Bugs. 2010;1(6):385–94.
Article
Google Scholar
Uddin SN, Islam KK. Cationic polymers and its uses in non-viral gene delivery systems: a conceptual research. Trends Med Res. 2006;1(2):86–99. https://doi.org/10.3923/tmr.2006.86.99.
Article
Google Scholar
Remes A, Williams DF. Immune response in biocompatibility. Biomaterials. 1992;13(11):731–43.
Article
CAS
Google Scholar
Sung YK, Kim SW. The practical application of gene vectors in cancer therapy. Integrative Cancer Sci Therap. 2018;5(5):1–5. https://doi.org/10.15761/ICST.1000287.
Article
Google Scholar
Katz M G, Fargnoli A S, Williams R D, Brigges C R, Gene therapy delivery systems for enhancing virial and non-virial vectors for cardiac diseases:current concepts and future applications. Human Gene Ther 2013; 24(11):1–7, https://doi.org/https://doi.org/10.1089/hum.2013.2517.
Guyon I, Weston J, Barnhill S, Vapnik V. Gene selection for cancer classification using support vector machines. Mach Learn. 2002;46:389–422.
Article
Google Scholar
Jones CH, Ravikrishnan A, Chen M, Reddinger R, Kamal Ahmadi M, Rane S, Hakansson AP, Pfeifer BA. Hybrid biosynthetic gene therapy for vector development and dual engineering capacity. Proc Nat Academy Sci USA. 2014;111(34):12360–5.
Article
CAS
Google Scholar
Lee M, Kim SW. Polyethylene glycol-conjugated copolymers for plasmid DNA delivery. Pharm Res. 2005;22:1–10.
Article
CAS
Google Scholar
Glover DJ, Lipps HJ, Jans DA. Towards safe, non-viral therapeutic gene expression in humans. Nat. Rev. Genet. 2005;6:299–310.
CAS
Google Scholar
Lostale-Seijo I, Montenegro J. Synthetic materials at the forefront of gene delivery. Nature Rev Chem. 2018;2:258–77.
Article
Google Scholar
Kim SW, Nam J-P, Kim S, Sung YK. Recent development of bio-reducible polymers for efficient gene delivery system. J Cancer Treat Diag. 2018;2(5):17–23.
Article
Google Scholar
Ginn SL, Amaya AK, Alexander IE, Edelstein M, Abedi MR. Gene therapy: clinical trials worldwide to 2017: an update. J Gene Med. 2018;20(e3015):1–16.
Google Scholar
Huli-Curtis SL, Uusi-Kerttula H, Jones R, Hanna L, Chester JD, Parker AL. Evaluation of CD46 re-targeted adenoviral vectors for clinical ovarian cancer intraperitoneal therapy. Cancer Gene Ther. 2016;23:229–34.
Article
CAS
Google Scholar
Blaese RM, Culver KW, Miller AD, Carter CS, Fleisher T, et al. T lymphocytedirected gene therapy for ADA-SCID: initial trial results after 4 years. Science. 1995;270:475–80.
Article
CAS
Google Scholar
Brenner MK, Rill DR, Moen RC, Krance RA, Mirro J Jr, et al. Gene-marking to trace origin of relapse after autologous bone-marrow transplantation. Lancet. 1993;341:85–6.
Article
CAS
Google Scholar
Hacein-Bey-Abina S, Von Kalle C, Schmidt M, McCormack MP, Wulffraat N, et al. LMO2-associated clonal T cell proliferation in two patients after gene therapy for SCID-X1. Science. 2003;302:415–9.
Article
CAS
Google Scholar
Gomez CE, Najera JL, Krupa M, Esteban M. The poxvirus vectors MVA and NYVAC as gene delivery systems for vaccination against infectious diseases and cancer. Curr Gene Ther. 2008;8:97–120.
Article
CAS
Google Scholar
Berges BK, Wolfe JH, Fraser NW. Transduction of brain by herpes simplex virus vectors. Mol Ther. 2007;15:20–9.
Article
CAS
Google Scholar
Stone D. Novel viral vector systems for gene therapy. Viruses. 2010;2010(2):1002–7.
Article
Google Scholar
Manno CS, Pierce GF, Arruda VR, Glader B, Ragni M, et al. Successful transduction of liver in hemophilia by AAV-factor IX and limitations imposed by the host immune response. Nat Med. 2006;12:342–7.
Article
CAS
Google Scholar
Kabanov AV, Kabanov VA. DNA complexes with polycations for the delivery of genetic material into cells. Bioconjug Chem. 1995;6:7–20.
Article
CAS
Google Scholar
Buwalda SJ, Dijkstra PJ, Feijen J. Poly(ethylene glycol)-poly(L -lactide) star block copolymer hydrogels cross-linked by metal-ligand coordination. J Polym Sci Part A. 2012;50(9):1783–93.
Article
CAS
Google Scholar
Bloomfield V. A condensation of DNA by multivalent cations: considerations on mechanism. Biopolymers. 1991;31:1471–81.
Article
CAS
Google Scholar
Bloomfield VA. DNA condensation. Curr Opin Struct Biol. 1996;6:334–41.
Article
CAS
Google Scholar
Kim JS, Maruyama A, Akaike T, Kim SW. Terplex DNA delivery system as a gene carrier. Pharm. Res. 1998;5:116–21.
Article
Google Scholar
Toncheva V, Wolfert MA, Dash PR, Oupicky D, Ulbrich K, et al. Novel vectors for gene delivery formed by self-assembly of DNA with poly(L-lysine) grafted with hydrophilic polymers. Biochim Biophys Acta Gen Rev. 1998;1380:354–68.
Article
CAS
Google Scholar
Maruyama A, Katoh M, Ishihara T, Akaike T. Comb-type polycations effectively stabilize DNA triplex. Bioconjug Chem. 1997;8:3–6.
Article
CAS
Google Scholar
Katayose S, Kataoka K. Water-soluble polyion complex associates of DNA and poly(ethylene glycol) poly(L-lysine) block copolymer. Bioconjug Chem. 1997;8:702–7.
Article
CAS
Google Scholar
Kim JS, Maruyama A, Akaike T, Kim SW. In vitro gene expression on smooth muscle cells using a terplex delivery system. J Control Release. 1997;47:51–9.
Article
CAS
Google Scholar
Azzam T, Eliyahu H, Shapira L, Linial M, Barenholz Y, Domb AJ. Polysaccharide-oligoamine based conjugates for gene delivery. J Med Chem. 2002;45:1817–24.
Article
CAS
Google Scholar
Janes KA, Calvo P, Alonso MJ. Polysaccharide colloidal particles as delivery systems for macromolecules. Adv. Drug Del. Rev. 2001;47:83–97.
Article
CAS
Google Scholar
Liu Z, Jiao Y, Wang Y, Zhou C, Zhang Z. Polysaccharides-based nanoparticles as drug delivery systems. Adv Drug Del Rev. 2008;60:1650–62.
Article
CAS
Google Scholar
Morris GA, Samil M, Ernest KS, Adams HG. Polysaccharide drug delivery systems based on pectin and chitosan. Biotech Genet Eng Rev. 2010;27(1):257–84.
Article
CAS
Google Scholar
Benjaminsen RV, Mattebjerg MA, Henriksen JR, Moghimi SM, Andersen TL. The possible “proton sponge” effect of Polyethylenimine (PEI) does not include change in lysosomal pH. Mol Ther. 2013;21(1):149–57.
Article
CAS
Google Scholar
Luu QP, Shin JY, Kim YK, Islam MA, Kang SK, Cho MH, Cho CS. High gene transfer by the osmotic polysorbitol-mediated transporter through the selective caveolae endocytic pathway. Mol Pharm. 2012;9(80):2206–18.
Article
CAS
Google Scholar
Doss CG, Debottam S, Debajyoti C. Glutathione-responsive nano-transporter-mediated siRNA delivery: silencing the mRNA expression of Ras. Protoplasma. 2013;250(3):787–92.
Article
CAS
Google Scholar
Hong R, Han G, Fernandez JM, Kim BJ, Forbes NS, Rotello VM. Glutathione-mediated delivery and release using monolayer protected nanoparticle carriers. J Amer Chem Soc. 2006;128(4):1078–9.
Article
CAS
Google Scholar
Oupicky D, Li J. Bio-reducible polycations in nucleic acid delivery: past, present, future trends. Macromol Biosci. 2014;14(7):908–22.
Article
CAS
Google Scholar
Wen HY, Dong HQ, Xie WJ, Li YY, Wang K, Pauletti GM, Shi DL. Rapidly disassembling nano-micelles with disulfide-linked PEG shells for glutathione-mediated intracellular drug delivery. Chem. Commun. (Camb). 2011;47(12):3550–2.
Article
CAS
Google Scholar
Chakravarthi S, Jessop CE, Bulleid NJ. The role of glutathione in disulphide bond formation and endoplasmic-reticulum-generated oxidative stress. EMBO Rep. 2006;7(3):271–5.
Article
CAS
Google Scholar
Bello Roufai M, Midoux P. Histidylated poly-lysine as DNA vector: elevation of the imidazole protonation and reduced cellular uptake without change in the polyfection efficiency of serum stabilized negative polyplexes. Bioconjug Chem. 2001;12(1):92–9.
Article
CAS
Google Scholar
Pack DW, Putnam D, Langer R. Design of imidazole-containing endo-somolytic biopolymers for gene delivery. Biotechnol Bioeng. 2000;67(2):217–23.
Article
CAS
Google Scholar
Pires LR, Oliveira H, Barrias CC, Sampaio P, Pereira AJ, Maiato H, Pego AP. Imidazole-grafted chitosan-mediated gene delivery: in vitro study on transfection, intracellular trafficking and degradation. Nano-medicine (Lond). 2011;6(9):1499–512.
Article
CAS
Google Scholar
Yang Y, Xu Z, Chen S, Gao Y, Gu W, Chen L, Li Y. Histidylated cationic polyorganophosphazene/DNA self-assembled nanoparticles for gene delivery. Int J Pharm. 2008;353(1–2):277–82.
Article
CAS
Google Scholar
Zhang X, Duan Y, Wang D, Bian F. Preparation of arginine modified PEI-conjugated chitosan copolymer for DNA delivery. Carbohydrate Polymer. 2015;122:53–9.
Article
CAS
Google Scholar
Ahn CH, Chae SY, Bae YH, Kim SW. Biodegradable poly(ethylenimine) for plasmid DNA delivery. J. Control. Rel. 2002;80:273–8.
Article
CAS
Google Scholar
Wang DA, Narang AS, Kotb M, Gaber AO, Miller DD, Kim SW, Mahato RI. Novel branched poly(Ethylenimine)-cholesterol water-soluble lipopolymers for gene delivery. Biomacromolecules. 2002;3:1197–202.
Article
CAS
Google Scholar
Furgeson DY, Chan WS, Yockman JW, Kim SW. Modified linear polyethylenimine-cholesterol conjugates for DNA complexation. Bioconjug Chem. 2003;14:840–5.
Article
CAS
Google Scholar
Furgason DY, Yockman JW, Janat MM, Kim SW. Tumor efficacy and biodistribution of linear polyethylenimine-cholesterol/DNA complexes. Molecular Ther. 2004;9:837–42.
Article
CAS
Google Scholar
Kim YH, Park JH, Lee M, Park TG, Kim SW. Polyethylenimine with acid-labile linkages as a biodegradable gene carrier. J. Control. Rel. 2005;103:209–13.
Article
CAS
Google Scholar
Christensen LV, Chang C-W, Kim WJ, Kim SW. Reducible poly(amido ethylenimine)s designed for triggered intracellular gene delivery. Bioconjug Chem. 2006;17:1233–40.
Article
CAS
Google Scholar
Christensen LV, Chang C-W, Yockman J, Conners WR, Jackson RH, Zhong Z, Feijen J, Bull DA, Kim SW. Reducible Poly(amido ethylenediamine) for Hypoxia-Inducible VEGF Delivery. J. Control. Rel. 2007;118:254–61.
Article
CAS
Google Scholar
Jeong JH, Christensen LV, Yockman JW, Zhong Z, Engbersen JFJ, Kim WJ, Feijen J, Kim SW. Reducible poly(amido ethylenimine) direct to enhance RNA interference. Biomaterials. 2007;28:1912–7.
Article
CAS
Google Scholar
Jeong JH, Kim SH, Christensen LV, Feijen J, Kim SW. Reducible poly(amido ethylenimine)-based gene delivey system for improved nucleus trafficking of plasmid DNA. Bioconjug Chem. 2010;1(2):296–301.
Article
CAS
Google Scholar
Zhang X, Oulad-Abdelghani M, Zelkin AN, Wang Y, Haîkel Y, Mainard D, Voegel JC, Caruso F, Benkirane-Jessel N. Poly(L-lysine) nanostructured particles for gene delivery and hormone stimulation. Biomaterials. 2010;31(7):1699–706.
Article
CAS
Google Scholar
Kwoh DY, Coffin CC, Lollo CP, Jovenal J, Banaszczyk MG, Mullen P, Phillips A, Amini A, Fabrycki J, Bartholomew RM, Brostoff SW, Carlo DJ. Stabilization of poly-L-lysine/DNA polyplexes for in vivo gene delivery to the liver. Biochim. Biophys. Acta. 1999;1444:171–90.
CAS
Google Scholar
Choi JS, Joo DK, Kim CH, Kim K, Park JS. Synthesis of a Barbell-like triblock copolymer, poly(L-lysine) dendrimer-block-poly(ethylene-glycol)-block-poly(L-lysine) dendrimer, and its self-assembly with plasmid DNA. J. Am. Chem. Soc. 2000;122:474–80.
Article
CAS
Google Scholar
Trubetskoy VS, Torchilin VP, Kennel SJ, Huang L. Use of N-terminal modified poly(L-lysine)-antibody conjugate as a carrier for targeted gene delivery in mouse lung endothelial cells. Bioconjug Chem. 1992;3(4):323–7.
Article
CAS
Google Scholar
Bikram M, Cheol-Hee Ahn C-H, Chae S-Y, Lee M, Yockman JW, Kim SW. Biodegradable poly(ethylene glycol)-co-poly(l-lysine)-g-histidine multi-block copolymers for non-viral gene delivery. Macromolecules. 2004;37(5):1903–16.
Article
CAS
Google Scholar
Martinez-Fong D, Mullersman JE, Purchio AF, Armendariz-Borunda J, Martinez-Hernandez A. Non-enzymatic glycosylation of poly-L-lysine: a new tool for targeted gene delivery. Hepatology. 1994;20(6):1602–8.
Article
CAS
Google Scholar
Banaszczyk MG, Kwoh DY, Carlo DJ. Poly-L-lysine-graft-PEG-comb-type polycation copolymers for gene delivery. J Macromol Sci Part A. 1999;36(7–8):1061–84.
Article
Google Scholar
Maruyama A, Ishihara T, Kim J-S, Kim SW, Akaike T. Nanoparticle DNA carrier with poly(L-lysine) grafted polysaccharide copolymer and poly(D,L-lactic acid). Bioconjug Chem. 1997;8:735–40.
Article
CAS
Google Scholar
Kim J-S, Maruyama A, Akaike T, Kim SW. Terplex DNA delivery system as a gene carrier, pharm. Research. 1998;15:116–20.
CAS
Google Scholar
Kim J-S, Kim BI, Maruyama A, Akaike T, Kim SW. A new non-viral DNA delivery vector: the terplex system. J ControlRel. 1998;53:175–80.
Article
CAS
Google Scholar
Choi YH, Liu F, Kim JS, Choi YK, Park JS, Kim SW. Polyethylene glycol-grafted poly-L-lysine as polymeric gene carrier. J Control Release. 1998;54:39–43.
Article
Google Scholar
Choi YH, Liu F, Park JS, Kim SW. Lactose-poly(ethylene glycol)-grafted poly-L-lysine as hepatoma cell-targeted gene carrier. Bioconjug Chem. 1998;9:708–12.
Article
CAS
Google Scholar
Choi YH, Liu F, Park JS, Kim SW. Characterization of a targeted gene carrier, lactose-polyethylene glycol-grafted poly-L-lysine, and its complex with plasmid DNA. Human Gene Ther. 1999;10:2657–61.
Article
CAS
Google Scholar
Park TG, Jeong JH, Kim SW. Current status of polymeric gene delivery systems. Adv. Drug Del. Rev. 2006;58(4):467–86.
Article
CAS
Google Scholar
van der Meel R, Vehmeijer L, Kok R J, Storm G, van Gaal E V, Ligand-targeted particulate Nano-medicines undergoing clinical evaluation: current status, in Intracellular Delivery III: editors, Prokop a, Weissig V, springer, 2015; Chap.7: 163–200.
Bodles-Brakhop AM, Heller R, Draghia-Akli R. Electroporation for the delivery of DNA-based vaccines and Immunotherapeutics: current clinical developments. Molecular Ther. 2009;17(4):585–92.
Article
CAS
Google Scholar
Pulkkanen KJ, Herttuala SY. Gene therapy for malignant glioma: current clinical status. Molecular Ther. 2005;12(4):585–98. https://doi.org/10.1016/j.ymthe.2005.07.357.
Article
CAS
Google Scholar
Rainov N G, A Phase III Clinical Evaluation of Herpes Simplex Virus Type 1 Thymidine Kinase and Ganciclovir Gene Therapy as an Adjuvant to Surgical Resection and Radiation in Adults with Previously Untreated Glioblastoma Multiforme. Human Gene Ther. 2000; 11(17): 2389–401. Pmid: 11096443. doi.org/https://doi.org/10.1089/104303400750038499
Young LS, Searle PF, David Onion D, Mautner V. Viral gene therapy strategies: from basic science to clinical application. J Pathol. 2006;208:299–318. https://doi.org/10.1002/path.1896.
Article
CAS
Google Scholar
Yoshida J, Mizuno IM, Wakabayashi T. Interferon-β gene therapy for cancer: basic research to clinical application. Cancer Sci. 2004;95(11):858–65.
Article
CAS
Google Scholar
Weichselbaum RR, Kufe DW, Hellman S, Rasmussen HS, King CR, Fischer PH, Mauceri HJ. Radiation-induced tumour necrosis factor-α expression: clinical application of transcriptional and physical targeting of gene therapy. Lacet Oncol. 2002;3(11):665–7.
CAS
Google Scholar
Amer MH. Gene therapy for cancer: present status and future perspective. Mol Cell Ther. 2014;2:27–32. https://doi.org/10.1186/2052-8426-2-27.
Article
Google Scholar
Jayant RD, Sosa D, Kaushik A, Atluri V, Vashist A, Tomitaka A, Nair M. Current status of non-viral gene therapy for CNS disorders. Expert Opin Drug Deliv. 2016;13(10):1433–45. https://doi.org/10.1080/17425247.2016.1188802.
Article
CAS
Google Scholar
Ginn S L, Amaya A K, Alexander I E, Edelstein M, Abedi M R, Gene therapy clinical trials worldwide to 2017: An update. J Gene Med. 2018; 20:e3015 (1–16).
Nam K, Jung S, Nam J-P, Kim S W, Poly(ethylenimine) conjugated bio-reducible dendrimer for efficient gene delivery. J Control Release, 2015; 220:447–455. PMID: 26551343.