Rošic R, Kocbek P, Pelipenko J, Kristl J, Baumgartner S: Nanofibers and their biomedical use. Acta Pharma. 2013, 63: 295-
Google Scholar
Haider A, Gupta KC, Kang IK: Morphological effects of HA on the cell compatibility of electrospun HA/PLGA composite nanofiber scaffolds. BioMed Res Int. 2014, http://dx.doi.org/10.1155/2014/308306,
Google Scholar
Li X, Kanjwal MA, Lin L, Chronakis IS: Electrospun polyvinyl-alcohol nanofibers as oral fast-dissolving delivery system of caffeine and riboflavin. Colloids Surf B Biointerf. 2013, 103: 1828-
Google Scholar
Illangakoon UE, Nazir T, Williams GR, Chatterton NP: Mebeverine-loaded electrospun nanofibers: physicochemical characterization and dissolution studies. J Pharma Sci. 2014, 103: 283-10.1002/jps.23759.
Google Scholar
Karthikeyan K, Guhathakarta S, Rajaram R, Korrapati PS: Electrospun zein/eudragit nanofibers based dual drug delivery system for the simultaneous delivery of aceclofenac and pantoprazole. Int J Pharm. 2012, 438: 17-
Google Scholar
Qian W, Yu DG, Li Y, Liao YZ, Wang X, Wang L: Dual drug release electrospun core-shell nanofibers with tunable dose in the second phase. International J Mol Sci. 2014, 15: 774-10.3390/ijms15010774.
Google Scholar
Li XY, Li YC, Yu DG, Liao YZ, Wang X: Fast disintegrating quercetin-loaded drug delivery systems fabricated using coaxial electrospinning. Int J Mol Sci. 2013, 14: 21647-10.3390/ijms141121647.
Google Scholar
Su Y, Su Q, Liu W, Lim M, Venugopal JR, Mo X, Ramakrishna S, Al-Deyab SS, El-Newehy M: Controlled release of bone morphogenetic protein and dexamethasone loaded in core–shell PLLACL– collagen fibers for use in bone tissue engineering. Acta Biomater. 2012, 1: 763-
Google Scholar
Anthony A, Lanza RP: Methods of tissue engineering. 2001, London: Academic
Google Scholar
Hartgerink JD, Beniash E, Stupp SI: Self-assembly and mineralization of peptide-amphiphile nanofibers”. Science. 2001, 294: 1684-10.1126/science.1063187.
Google Scholar
Gu B, Badding JV, Sen A: A new approach in melt-blown technique for fabrication of polymer nanofibers”. Polym Prepr. 2003, 44: 142-
Google Scholar
Feng L, Li S, Li H, Zhai J, Song Y, Jiang L, Zhu D: Super-hydrophobic surface of aligned poly(acrylonitrile) nanofibers. Angew Chem Int Edit. 2002, 41: 1221-10.1002/1521-3773(20020402)41:7<1221::AID-ANIE1221>3.0.CO;2-G.
Google Scholar
Williams GR, Chatterton NP, Nazir T, Yu DG, Zhu LM, Branford-White CJ: Electrospun nanofibers in drug delivery: recent developments and perspectives. Ther Deliv. 2012, 3: 515-10.4155/tde.12.17.
Google Scholar
Caracciolo PC, Tornello PC, Ballarin FM, Abraham GA: Development of electrospun nanofibers for biomedical applications: state of the art in Latin America. J Biomater Tissue Eng. 2013, 3: 39-10.1166/jbt.2013.1066.
Google Scholar
Song B, Wu C, Chang J: Dual drug release from electrospun poly(lactic-co-glycolic acid)/mesoporous silica nanoparticles composite mats with distinct release profiles. Acta Biomater. 2012, 8: 1901-10.1016/j.actbio.2012.01.020.
Google Scholar
Xiang Q, Ma YM, Yu DG, Jin M, Williams GR: Electrospinning using a teflon-coated spinneret. Appl Surf Sci. 2013, 284: 889-
Google Scholar
Joung YK, Heo JH, Park KM, Park KD: Controlled release of growth factors from core-shell structured PLGS microfibers for tissue engineering. Biomaterial Research. 2011, 15: 78-
Google Scholar
Zahedi P, Rezaeian I, Ranaei-Siadat SO, Jafari SH, Supaphol P: A review on wound dressings with an emphasis on electrospun nanofibrous polymeric bandages. Polym Adv Technol. 2010, 21: 77-
Google Scholar
Uppal R, Ramaswamy GN, Arnold C, Goodband R, Wang Y: Hyaluronic acid nanofiber wound dressing-production, characterization, and in vivo behaviour. J Biomed Mater Res B: Appl Biomaterials. 2011, 97B: 20-10.1002/jbm.b.31776.
Google Scholar
Kenawy ER, Layman JM, Watkins JR, Bowlin GL, Matthews JA, Simpson DG, Wnek GE: Electrospinning of poly(ethylene-covinyl alcohol) fibers. Biomaterials. 2003, 24: 907-10.1016/S0142-9612(02)00422-2.
Google Scholar
Balaji S, Vaikunth SV, Lang SA, Sheikh AQ, Lim FY, Cromleholme TM, Narmoneva DA: Tissue-engineered provisional matrix as a novel approach to enhance diabetic wound healing. Wound Repair Regeneration. 2012, 20: 15-10.1111/j.1524-475X.2011.00750.x.
Google Scholar
Wu XM, Branford-White C, Zhu LM, Chatterton N, Yu DG: Ester prodrug-loaded electrospun cellulose acetate fiber mats as transdermal drug delivery systems. J Mater Sci. 2010, 21: 2403-
Google Scholar
Heunis TDJ, Dicks LMT: Nanofibers offer alternative ways to the treatment of skin infections. J Biomed Biotechnol. 2010, 2010: 1-
Google Scholar
Zamani M, Morshed M, Varshosaz J, Jannesari M: Controlled release of metronidazole benzoate from poly(ε-caprolactone) electrospun nanofibers for periodontal diseases. Eur J Pharm Biopharm. 2010, 75: 179-10.1016/j.ejpb.2010.02.002.
Google Scholar
Jiang YN, MoD HY, Yu G: Electrospun drug-loaded core-sheath PVP/zein nanofibers for biphasic drug release. Int J Pharm. 2012, 438: 232-10.1016/j.ijpharm.2012.08.053.
Google Scholar
Xu W, Atala A, Yoo JJ, Lee SJ: Controllable dual protein delivery through electrospun fibrous scaffolds with different hydrophilicities. Biomed Mater. 2013, 8 (8pp): 014104-doi:10.1088/1748-6041/8/1/014104
Google Scholar
Last I, Levy Y, Jortner J: Beyond the Rayleigh instability limit for multicharged finite systems: from fission to Coulomb explosion. PNAS. 2002, 99: 9107-10.1073/pnas.142253999.
Google Scholar
Baumgarten PK: Electrostatic spinning of acrylic microfibers. J Colloid and Interf Sci. 1971, 36: 71-10.1016/0021-9797(71)90241-4.
Google Scholar
Annis D, Bornat A, Edwards RO, Higham A, Loveday B, Wilson J: An elastomeric vascular prosthesis. Trans Am Soc Artif Intern Organs. 1978, 71: 209-
Google Scholar
Larrondo L, Manley R, St John R: Electrostatic fiber spinning from polymer melts. II. Examination of the flow field in an electrically driven jet. J Polym Sci. 1981, 19: 921-
Google Scholar
Das S, Wajid AS, Bhattacharia SK, Wilting MD, Rivero IV, Green MJ: Electrospinning of polymer nanofibers loaded with noncovalently functionalized grapheme. J Appl Polym Sci. 2013, 128: 4040-10.1002/app.38694.
Google Scholar
Reneker D, Chun I: Nanometre diameter fibres of polymer, produced by electrospinning. Nanotechnology. 1996, 7: 216-10.1088/0957-4484/7/3/009.
Google Scholar
Till TJ, von Recum HA: Electrospinning: applications in drug delivery and tissue engineering. Biomaterials. 2008, 29: 1986-
Google Scholar
Frenot A, Chronakis IS: Polymer nanofibers assembled by electrospinning. Curr Opin Int. 2003, 8: 64-10.1016/S1359-0294(03)00004-9.
Google Scholar
Kumbar SG, James R, Nukavarapu SP, Laurencin CT: Electrospun nanofiber scaffolds: engineering soft tissues. Biomed Mater. 2008, 3: 1-
Google Scholar
Barnes C, Sell S, Boland E, Simpson D, Bowling G: Nanofibers technology: designing the next generation of tissue engineering scaffolds. Adv Drug Deliv Rev. 2007, 59: 1413-10.1016/j.addr.2007.04.022.
Google Scholar
Taylor GI: Electrically driven jets. Proc R Soc London, Ser A. 1969, 313: 453-10.1098/rspa.1969.0205.
Google Scholar
Yu J, Qiu YJ, Zha XX, Yu M, Rafique J, Yin J: Production of aligned helical polymer nanofibers by electrospinning. Eur Polym J. 2008, 44: 2838-10.1016/j.eurpolymj.2008.05.020.
Google Scholar
Zhang Y, Li J, Li Q, Zhu L, Liu X, Zhong X, Meng J, Cao X: Preparation of CeO2– ZrO2 ceramic fibers by electrospinning. J Colloid Interf Sci. 2007, 307: 567-10.1016/j.jcis.2006.12.048.
Google Scholar
Nirmala R, Kalpana D, Jeong JW, Oh HJ, Lee JH, Navamathavan R, Lee YS, Kim HY: Multifunctional baicale in blended poly(vinyl alcohol) composite nanofibers via electrospinning. Colloids Surface A. 2011, 384: 605-10.1016/j.colsurfa.2011.05.009.
Google Scholar
Cao H, Chen X, Yao J, Shao Z: Fabrication of an alternative regenerated silk fibroin nanofiber and carbonated hydroxyapatite multilayered composite via layer-by-layer. J Mater Sci. 2013, 48: 150-10.1007/s10853-012-6722-6.
Google Scholar
Wu H, Pan W, Lin D, Li H: Electrospinning of ceramic nanofibers: fabrication, assembly and applications. J Adv Ceramics. 2012, 1: 2-10.1007/s40145-012-0002-4.
Google Scholar
Wang CY, Zhang KH, Fan CY, Mo XM, Ruan HJ, Li FF: Aligned natural-synthetic polyblend nanofibers for peripheral nerve regeneration. Acta Biomater. 2011, 7: 634-10.1016/j.actbio.2010.09.011.
Google Scholar
Brun P, Ghezzo F, Roso M, Danesin R, Palu` A, Bagno G, Modesti M, Castagliuolo I, Dettin M: Electrospun scaffolds of self-assembling peptides with poly(ethylene oxide) for bone tissue engineering. Acta Biomater. 2011, 7: 2526-10.1016/j.actbio.2011.02.025.
Google Scholar
Pant HR, Neupane MP, Pant B, Panthi G, Oh HJ, Lee MH, Kim HY: Fabrication of highly porous poly (ε − caprolactone) fibers for novel tissue scaffold via water-bath electrospinning. Colloids and Surfaces B Biointerf. 2011, 88: 587-10.1016/j.colsurfb.2011.07.045.
Google Scholar
Anuradha S, Uma Maheswari K, Swaminathan S: Fabrication of uniaxially aligned 3D electrospun scaffolds for neural regeneration. Biomed Mater. 2011, 6 (2): 025004-10.1088/1748-6041/6/2/025004. doi:10.1088/1748-6041/6/2/025004. Epub 2011 Feb 7
Google Scholar
Moreno I, Gonza´lez-Gonza´lez V, Romero-Garcı´a J: Electrospun core-shell nanofibers for drug encapsulation and sustained release. Eur Polym J. 2011, 47: 1264-10.1016/j.eurpolymj.2011.03.005.
Google Scholar
Shao S, Li L, Yang G, Li J, Luo C, Gong T, Zhou S: Controlled green tea polyphenols release from electrospun PCL/MWCNTs composite nanofibers. Int J Pharm. 2011, 421: 310-10.1016/j.ijpharm.2011.09.033.
Google Scholar
Soletti L, Nieponice A, Hong Y, Ye SH, Stankus JJ, Wagner WR, Vorp DA: In vivo performance of a phospholipid-coated bioerodable elastomeric graft for small- diameter vascular applications. J Biomed Mat Res-A. 2011, 96A: 436-10.1002/jbm.a.32997.
Google Scholar
Luo Y, Nartker S, Miller H, Hochhalter D, Wiederoder M, Wiederoder S, Setterington E, Drzal LT, Alocilja EC: Surface functionalization of electrospun nanofibers for detecting E. coli O157:H7 and BVDV cells in a direct-charge transfer. Biosens Bioelectron. 2010, 26: 1612-10.1016/j.bios.2010.08.028.
Google Scholar
Zheng Y, Wang J, Yao P: Formaldehyde sensing properties of electrospun NiO-doped SnO2 nanofibers. Sensors Actuators B Chem. 2011, 156: 723-10.1016/j.snb.2011.02.026.
Google Scholar
Shabani I, Hasani-Sadrabadi MM, Haddadi-Asl V, Soleimani M: Nanofiber-based poly (electrolytes) as novel membranes for fuel cell applications. J Membrane Sci. 2011, 368: 233-10.1016/j.memsci.2010.11.048.
Google Scholar
Nair AS, Jose R, Shengyuan Y, Ramakrishna S: A simple recipe for an efficient TiO2 nanofiber-based dye-sensitized solar cell. J Colloid Interf Sci. 2011, 353: 39-10.1016/j.jcis.2010.09.042.
Google Scholar
Wang L, Yu Y, Chen PC, Zhang DW, Chen CH: Electrospinning synthesis of C/Fe3O4 composite nanofibers and their application for high performance lithium-ion batteries. J Power Sources. 2008, 183: 717-10.1016/j.jpowsour.2008.05.079.
Google Scholar
Camposeo A, Persano L, Pisignano D: Light-emitting electrospun nanofibers for nanophotonics and optoelectronics. Macromol Mater Eng. 2013, 298: 487-10.1002/mame.201200277.
Google Scholar
Yun S, Lim S: Improved conversion efficiency in dye-sensitized solar cells based on electrospun Al-doped ZnO nanofiber electrodes prepared by seed layer treatment. J Solid State Chem. 2011, 184: 273-10.1016/j.jssc.2010.11.024.
Google Scholar
Yaakob Z, Jafar Khadem D, Shahgaldi S, Wan Daud WR, Tasirin SM: The role of Al and Mg in the hydrogen storage of electrospun ZnO nanofibers. Int J Hydrogen Energ. 2012, 37: 8388-10.1016/j.ijhydene.2012.02.092.
Google Scholar
Zeng J, Xu X, Chen X, Liang Q, Bian X, Yang L, Jing X: Biodegradable electrospun fibers for drug delivery. J Control Rel. 2003, 92: 227-10.1016/S0168-3659(03)00372-9.
Google Scholar
Langer R: Drug delivery and targeting. Nature. 1998, 5 (6679, Suppl): 5-
Google Scholar
Tunngprapa S, Jungchud I, Supapol P: Release characteristics of four model drugs from drug loaded electrospun cellulose acetate fiber mats. Polymer. 2007, 48: 5030-10.1016/j.polymer.2007.06.061.
Google Scholar
Quan J, Yu Y, Branford-White C, Williams GR, Yu DG, Nie W, Zhu LM: Preparation of ultrafine fast-dissolving Feruloyl-oleyl-glycerol-loaded polyvinylpyrrolidone fiber mats via electrospinning. Colloid Surface B. 2011, 88: 304-10.1016/j.colsurfb.2011.07.006.
Google Scholar
Verreck G, Chun I, Peter J, Rasen B, Brewster ME: Preparation and characterization of nanofibers containing amorphous drug dispersion generated by electrostatic spinning. Pharm Res. 2003, 20: 810-10.1023/A:1023450006281.
Google Scholar
Zong X, Kim K, Fang D, Ran S, Hsiao BS, Chu B: Structure and process relationship of electrospun bioabsorbable nanofiber membranes. Polymer. 2002, 43: 4403-10.1016/S0032-3861(02)00275-6.
Google Scholar
Goodson JM, Holborow DW, Dunn RL, Hogan PE, Dunham SL: Monolithic tetracycline-containing fibers for cotrolled delivery to periodontal pocket. J Periodontal. 1983, 54: 575-10.1902/jop.1983.54.10.575.
Google Scholar
Kenawy ER, Bowlin GL, Mansfield K, Layman J, Simpson DG, Sanders EH, Wnek GE: Release of tetracycline hydrochloride from electrospun poly(ethylene-co-vinylacetate), poly(lactic acid), and a blend. J Control Rel. 2002, 81: 57-10.1016/S0168-3659(02)00041-X.
Google Scholar
Maretschek S, Greinerb A, Kissel T: Electrospun biodegradable naofiber nanowoven for controlled release of protein. J Control Rel. 2008, 127: 180-10.1016/j.jconrel.2008.01.011.
Google Scholar
Xu X, Zhuang X, Chen X, Wang X, Yang L, Xing X: Preparation of core-sheath composites nanofibers by emulsion electrospining. Macromol Rapid Commun. 2006, 27: 1637-10.1002/marc.200600384.
Google Scholar
Saraf A, Baggett LS, Raphael RM, Kasper FK, Mikos AG: Regulated non-viral gene delivery from coaxial electrospun fiber mesh scaffolds. J Control Rel. 2010, 143: 95-10.1016/j.jconrel.2009.12.009.
Google Scholar
Ji W, Yang F, van den Beucken JJJP, Bian Z, Fan M, Chen Z, Jansen JA: Fibrous scaffolds loaded with protein prepared by blend or coaxial electrospinning. Acta Biomater. 2010, 6: 4199-10.1016/j.actbio.2010.05.025.
Google Scholar
Meng ZX, Xu XX, Zheng W, Zhou HM, Li L, Zheng YF, Lou X: Preparation and characterization of electrospun PLGA/gelatin nanofibers as a potential drug delivery system. Colloid Surface B: Biointerfaces. 2011, 84: 97-10.1016/j.colsurfb.2010.12.022.
Google Scholar
Noh HK, Lee SW, Kim JM, Oh JE, Kim KH, Chung CP, Choi SC, Park WH, Min BM: Electrospinning of chitin nanofibers: degradation behavior and cellular response to normal human keratinocytes and fibroblasts. Biomaterials. 2006, 27: 3934-10.1016/j.biomaterials.2006.03.016.
Google Scholar
Maleki M, Latifi M, Amani-Tehran M, Mathur S: Electrospun core–shell nanofibers for drug encapsulation and sustained release. Polym Eng & Sci. 2013, 53: 1770-10.1002/pen.23426.
Google Scholar
Ranganath SH, Wang CH: Biodegradable post-surgical chemotherapy against malignant Glioma. Biomaterials. 2008, 29: 2996-10.1016/j.biomaterials.2008.04.002.
Google Scholar
Yan J, Yu DG: Smoothening electrospinning and obtaining high quality cellulose acetate nanofibers using a modified coaxial process. J Mater Sci. 2012, 47: 7138-10.1007/s10853-012-6653-2.
Google Scholar
Luu YK, Kim K, Hsiao BS, Chu B: Development of a nanostructured DNA delivery scaffold via electrospinning of PLGA and PLA–PEG block copolymers. J Control Rel. 2003, 89: 341-10.1016/S0168-3659(03)00097-X.
Google Scholar
Huang ZM, He CL, Yang A, Zhang Y, Han XJ, Yin J, Wu Q: Encapsulating drugs in biodegradable ultrafine fibers through coaxial electrospining. J Biomat Mat Res. 2006, 77A: 169-10.1002/jbm.a.30564.
Google Scholar
Mickova A, Buzgo M, Benada O, Rampichova M, Fisar Z, Filova E, Tesarova M, Lukas D, Amler E: Core/shell nanofibers with embedded liposomes as a drug delivery system. Biomacromolecules. 2012, 13: 952-10.1021/bm2018118.
Google Scholar
Taepaibon P, Rungsardthang V, Supapol P: Drug loaded electrospun mats of poly(vinyl alcohol) fiber and their release characteristics of four model drugs. Nanotechnology. 2006, 17: 2317-10.1088/0957-4484/17/9/041.
Google Scholar
Xie J, Wang CH: Electrospun micro and nanofibers for sustained delivery of paclitaxel to treat C6 glioma In Vitro. Pharma Res. 2006, 23: 1817-10.1007/s11095-006-9036-z.
Google Scholar
Xu X, Chen X, Wang Z, Jing X: Ultrafine, PEG-PLA fiber loaded with both paclitaxel and doxorubicin hydrochloride and their In Vitro cytotoxicity. Eur J Pham Biopharm. 2009, 72: 18-10.1016/j.ejpb.2008.10.015.
Google Scholar
Yohe ST, Colson YL, Grinstaff MW: Superhydrophobic materials for tunable drug release: using displacement of air to control delivery rates. J Am Chem Soc. 2012, 134: 2016-10.1021/ja211148a.
Google Scholar
Yohe ST, Herrera VL, Colson YL, Grinstaff MW: 3D superhydrophobic electrospun meshes as reinforcement materials for sustained local drug delivery against colorectal cancer cells. Control Rel. 2012, 162: 92-10.1016/j.jconrel.2012.05.047.
Google Scholar
Beck-Broichsitter M, Thieme M, Nguyen J, Schmehl T, Gessler T, Seeger W, Agarwal S, Greiner A, Kissel T: Novel 'nano in nano' composites for sustained drug delivery: biodegradable nanoparticles encapsulated into nanofiber non-wovens. Macromol Biosci. 2010, 19: 1527-
Google Scholar
Xu J, Jiao Y, Shao X, Zhou C: Controlled dual release of hydrophobic and hydrophilic drugs from electrospun poly (L-lactic acid) fiber mats loaded with chitosan microspheres. Mater Lett. 2011, 65: 2800-10.1016/j.matlet.2011.06.018.
Google Scholar
Yan S, Xiaoqiang L, Shuiping L, Xiumei M, Ramakrishna S: Controlled release of dual drugs from emulsion electrospun nanofibrous mats. Colloids Surf B Biointerf. 2009, 73: 376-10.1016/j.colsurfb.2009.06.009.
Google Scholar
Huang C, Soenen SJ, van Gulck E, Vanham G, Rejman J, Van Calenbergh S, Vervaet C, Coenye T, Verstraelen H, Temmerman M, Demeester J, De Smedt SC: Electrospun cellulose acetate phthalate fibers for semen induced anti-HIV vaginal drug delivery. Biomaterials. 2012, 33: 962-10.1016/j.biomaterials.2011.10.004.
Google Scholar
Akhgari A, Heshmati Z, Sharif Makhmalzadeh B: Indomethacin electrospun nanofibers for colonic drug delivery: preparation and characterization. Adv Pharma Bulletin. 2013, 3: 85-
Google Scholar
Shen X, Yu D, Zhu L, Branford-White C, White K, Chatterton NP: Electrospun diclofenac sodium loaded Eudragit® L 100–55 nanofibers for colon-targeted drug delivery. Int J Pharm. 2011, 408: 200-10.1016/j.ijpharm.2011.01.058.
Google Scholar
Weldon CB, Tsui JH, Shankarappa SA, Nguyen VT, Ma M, Anderson DG, Kohane DS: Electrospun drug-eluting sutures for local anesthesia. J Control Rel. 2012, 161: 903-10.1016/j.jconrel.2012.05.021.
Google Scholar
Jiang H, Hu Y, Li Y, Zhao P, Zhu K, Chen W: A facile technique to prepare biodegradable coaxial electrospun nanofibers for controlled release of bioactive agents. J Control Rel. 2005, 108: 237-10.1016/j.jconrel.2005.08.006.
Google Scholar
Xu XL, Yang LX, Xu XY, Wang X, Chen XS, Liang QZ, Zeng J, Jing XB: Ultrafine medicated fibers electrospun from W/O emulsions. J Control Rel. 2005, 108: 33-10.1016/j.jconrel.2005.07.021.
Google Scholar
Yang Y, Li X, Cui W, Zhou S, Tan R, Wang C: Electrospun core-shell nanofibers for drug encapsulation and sustained release. J Biomed Mater Res A. 2008, 86: 374-
Google Scholar
Park HS, Kim AR, Noh I: Physical and biological evaluation of cross-linked hyaluronic acid film. Biomaterial Research. 2013, 17: 153-
Google Scholar
Kim AR, Park HS, Kim SS, Noh I: Biological evaluation of cellulose hydrogel with temperature responsive particles. Biomateial Research. 2013, 17: 181-
Google Scholar
Nie H, Wang CH: Fabrication and characterization of PLGA/HAp composite scaffolds for delivery of BMP-2 plasmid DNA. J Control Rel. 2007, 120: 111-10.1016/j.jconrel.2007.03.018.
Google Scholar
Gombotz WR, Pettit DK: Biodegradable polymers for protein and peptide drug delivery. Bioconjugate Chem. 1995, 6: 332-10.1021/bc00034a002.
Google Scholar
Casper CL, Yamaguchi N, Kiick KL, Rabolt JF: Functionalizing electrospun fibers with biologically relevant macromolecules. Biomacromolecules. 2009, 6: 1998-
Google Scholar
Ojha SS, Stevens DR, Hoffman TJ, Stano K, Klossner R, Scott MC, Krause W, Clarke LI, Gorga RE: Fabrication and characterization of electrospun chitosan nanofibers formed via templating with polyethylene oxide. Biomacromolecules. 2009, 9: 2523-
Google Scholar
Deitzel JM, Kleinmeyer JD, Hirvonen JK, Tan NCB: Controlled deposition of electrospun poly (ethylene oxide) fibers. Polymer. 2001, 42: 8163-10.1016/S0032-3861(01)00336-6.
Google Scholar
Ignatova M, Manolova N, Markova N, Rashkov I: Electrospun non-woven nanofibrous hybrid mats based on chitosan and PLA for wound-dressing applications. Macromol Bioscience. 2009, 9: 102-10.1002/mabi.200800189.
Google Scholar
Said SS, El-Halfawy OM, El-Gowelli HM, Aloufy AK, Boraei NA, El- Khordagui LK: Bioburden-responsive antimicrobial PLGA ultrafine fibers for wound healing. Eur J Pharm Biopharm. 2012, 80: 85-10.1016/j.ejpb.2011.08.007.
Google Scholar
Yang F, Murugan R, Wang S, Ramakrishna S: Electrospinning of nano/micro scale poly (L-lactic acid) aligned fibers and their potential in neural tissue engineering. Biomaterials. 2005, 26: 2603-10.1016/j.biomaterials.2004.06.051.
Google Scholar
Karami Z, Rezaeian I, Zahe P: Preparation and performance evaluations of electrospun poly(ε-caprolactone), poly(lactic acid), and their hybrid (50/50) nanofibrous mats containing thymol as an herbal drug for effective wound healing. J Appl Polym Sci. 2013, 129: 756-10.1002/app.38683.
Google Scholar
Gümüşderelioğlu M, Dalkıranoğlu S, Aydın RST, Cakmak S: A novel dermal substitute based on biofunctionalized electrospun PCL nanofibrous matrix. J Biomed Mater Res, Part A. 2011, 98: 461-
Google Scholar
Jannesari M, Varshosaz J, Morshed M, Zamani M: Composite poly (vinyl alcohol)/poly (vinyl acetate) electrospun nanofibrous mats as novel wound dressing matrix for controlled release of drugs. Int J Nanomed. 2011, 6: 993-
Google Scholar
Zhang Y, Ouyang H, Lim CT, Ramakrishna S, Huang Z-M: Electrospinning of gelatin fibers and gelatin/PCL composite fibrous scaffolds. J Biomed Mater Res, Part B. 2005, 72: 156-
Google Scholar
Konishi M, Tabata Y, Kariya M, Hosseinkhani H, Suzuki A, Fukuhara K, Mandai M, Takakura A, Fujii S: In vivo anti-tumor effect of dual release of cisplatin and adriamycin from biodegradable gelatin hydrogel. J Control Rel. 2005, 103: 7-10.1016/j.jconrel.2004.11.014.
Google Scholar
Wei L, Cai CH, Lin JP, Chen T: Dual-drug delivery system based on hydrogel/micelle composites. Biomaterials. 2009, 30: 2606-10.1016/j.biomaterials.2009.01.006.
Google Scholar
Claes LE: Mechanical characterization of biodegradable implants. Clinical Mater. 1992, 10: 416-
Google Scholar
Xu C, Xu F, Wang B, Lu TJ: Electrospinning of poly(ethylene-co-vinyl alcohol) nanofibres encapsulated with Ag nanoparticles for skin wound healing. J Nanomaterials. 2011, 2011: 7-Article ID 201834. http://dx.doi.org/10.1155/2011/201834,
Google Scholar
Yun YR, Kim HW, Jang JH: Application of growth factors in tissue regeneration. Biomaterial Research. 2013, 17: 133-
Google Scholar
Atala A, Lanza R: Principles of regerative medicine. 2007, New York: Academic
Google Scholar
Ioannis YV: Regenerative medicine”. 2005, New York: Springer Verlag
Google Scholar
Fang X, Reneker DH: DNA fibers by electrospinning. J Macromo Sci Phys B. 1997, 36: 169-
Google Scholar
Ashcroft GS, Mills SJ: Androgen receptor-mediated inhibition of cutaneous wound healing. J Clin Invest. 2002, 110: 615-10.1172/JCI0215704.
Google Scholar
Chen RR, Mooney DJ: Polymeric growth factor delivery strategies for tissue engineering. Pharm Res. 2003, 20: 1103-10.1023/A:1025034925152.
Google Scholar
Chong C, Wang Y, Maitz PKM, Simanainen U, Li Z: Electrospun scaffold loaded with anti-androgen receptor compound for accelerating wound healing. Burns and Trauma. 2013, 1: 95-
Google Scholar
Jia H, Zhu G, Vugrinovich B, Kataphinan W, Reneker DH, Wang P: Enzyme-carrying polymeric nanofibers prepared via electrospinning for use as unique biocatalysts. Biotechnol Prog. 2002, 18: 1027-10.1021/bp020042m.
Google Scholar
Zeng J, Aigner A, Czubayko F, Kissel T, Wandorff JH, Greiner A: Poly (vinyl alcohol) nanofibers by electrospinning as a protein delivery system and the retardation of enzyme release by additional polymer coatings. Biomacromolecules. 2005, 6: 1484-10.1021/bm0492576.
Google Scholar
Barnes CP, Sell SA, Boland ED, Simpson DG, Bowling GL: Nanofiber technology: designing the next generation of tissue engineering scaffolds. Adv Drug Del Rev. 2007, 59: 1413-10.1016/j.addr.2007.04.022.
Google Scholar
Liang D, Hsiao BS, Chu B: Functional electrospun nanofibrous scaffolds for biomedical applications. Adv Drug Del Rev. 2007, 59: 1392-10.1016/j.addr.2007.04.021.
Google Scholar
Pham QP, Sharma U, Mikos AG: Electrospinning of polymeric nanofibers for tissue engineering applications: a review. Tissue Eng. 2006, 12: 1197-10.1089/ten.2006.12.1197.
Google Scholar
Ma Z, Kotaki M, Inai R, Ramakrishna S: Potential of nanofiber matrix as tissue-engineering scaffolds. Tissue Eng. 2005, 11: 101-10.1089/ten.2005.11.101.
Google Scholar
Yoshimoto H, Shin YM, Terai H, Vacanti JP: A biodegradable nanofiber scaffold by electrospinning and its potential for bone tissue engineering. Biomaterials. 2003, 24: 2077-10.1016/S0142-9612(02)00635-X.
Google Scholar
Badami AS, Kreke MR, Thompson MS, Riffle JS, Goldstein AS: Effect of fiber diameter on spreading, proliferation, and differentiation of osteoblastic cells on electrospun poly (lactic acid). Biomaterials. 2006, 27: 596-10.1016/j.biomaterials.2005.05.084.
Google Scholar
Sombatmankhong K, Sanchavanakit N, Pavasant P, Supaphol P: Bone scaffolds from electrospun fiber mats of poly(3-hydroxybutyrate), poly(3-hydroxybutyrate-co-3-hydroxyvalerate) and their blend. Polymer. 2007, 48: 1419-10.1016/j.polymer.2007.01.014.
Google Scholar
Meng W, Xing ZC, Jung KH, Kim SY, Yuan J, Kang IK, Yoon SC, Shin HI: Synthesis of gelatin-containing PHBV nanofiber mats for biomedical application. J Mater Sci Mater Med. 2008, 19: 2799-10.1007/s10856-007-3356-3.
Google Scholar
Meng W, Kim SY, Yuan J, Kim JC, Kwon OH, Kawazoe N, Chen G, Ito Y, Kang IK: Electrospun PHBV/collagen composite nanofibrous scaffolds for tissue engineering. J Biomater Sci Polymer Ed. 2007, 18: 81-10.1163/156856207779146114.
Google Scholar
Binulala NS, Amrita N, Menona D, Bhaskaranb VK, Monya U, Naira SV: PCL–gelatin composite nanofibers electrospun using diluted acetic acid–ethyl acetate solvent system for stem cell-based bone tissue engineering. J Biomater Sci, Polym Edi. 2014, 25: 325-10.1080/09205063.2013.859872.
Google Scholar
Kim HW, Yu HS, Lee HH: Nanofibrous matrices of poly (lactic acid) and gelatin polymeric blends for the improvement of cellular responses. J Biomed Mater Res Part A. 2007, 87A: 25-
Google Scholar
Lee J, Yu HS, Hong SJ, Jeong I, Jang JH, Kim HW: Nanofibrous membrane of collagen-poly(caprolactone) for cell growth and tissue regeneration. J Mater Sci Mater Med. 2009, 9: 1927-
Google Scholar
Li C, Vepari C, Jin HJ, Kim HJ, Kaplan DL: Electrospun silk-BMP-2 scaffolds for bone tissue engineering. Biomaterials. 2006, 27: 3115-10.1016/j.biomaterials.2006.01.022.
Google Scholar
Kitazono E, Kaneko H, Miyoshi T, Miyamoto K: Tissue engineering using Nanofiber. J Synth Org Chem Jpn. 2004, 62: 514-10.5059/yukigoseikyokaishi.62.514.
Google Scholar