MaHam A, Tang Z, Wu H, Wang J, Lin Y: Protein-based nanomedicine platforms for drug delivery. Small. 2009, 5: 1706-1721. 10.1002/smll.200801602.
Article
Google Scholar
Davis ME, Chen Z, Shin DM: Nanoparticle therapeutics: an emerging treatment modality for cancer. Nat Rev Drug Discov. 2008, 7: 771-782. 10.1038/nrd2614.
Article
Google Scholar
Peer D, Karp JM, Hong S, Farokhzad OC, Margalit R, Langer R: Nanocarriers as an emerging platform for cancer therapy. Nat Nano. 2007, 2: 751-760. 10.1038/nnano.2007.387.
Article
Google Scholar
Sun C, Lee JSH, Zhang M: Magnetic nanoparticles in MR imaging and drug delivery. Adv Drug Deliver Rev. 2008, 60: 1252-1265. 10.1016/j.addr.2008.03.018.
Article
Google Scholar
Rösler A, Vandermeulen GWM, Klok H-A: Advanced drug delivery devices via self-assembly of amphiphilic block copolymers. Adv Drug Deliver Rev. 2012, 64 (Supplement): 270-279.
Article
Google Scholar
Gong J, Chen M, Zheng Y, Wang S, Wang Y: Polymeric micelles drug delivery system in oncology. J Control Release. 2012, 159: 312-323. 10.1016/j.jconrel.2011.12.012.
Article
Google Scholar
Liechty WB, Kryscio DR, Slaughter BV, Peppas NA: Polymers for drug delivery systems. Annu Rev Chem Biomol. 2010, 1: 149-173. 10.1146/annurev-chembioeng-073009-100847.
Article
Google Scholar
Haag R, Kratz F: Polymer therapeutics: concepts and applications. Angew Chemie Int Ed. 2006, 45: 1198-1215. 10.1002/anie.200502113.
Article
Google Scholar
Wang AZ, Langer R, Farokhzad OC: Nanoparticle delivery of cancer drugs. Annu Rev Med. 2012, 63: 185-198. 10.1146/annurev-med-040210-162544.
Article
Google Scholar
Allen TM, Cullis PR: Liposomal drug delivery systems: from concept to clinical applications. Adv Drug Deliver Rev. 2013, 65: 36-48. 10.1016/j.addr.2012.09.037.
Article
Google Scholar
Gabizon AA: Stealth liposomes and tumor targeting: one step further in the quest for the magic bullet. Clin Cancer Res. 2001, 7: 223-225.
Google Scholar
Toita R, Murata M, Tabata S, Abe K, Narahara S, Piao JS, Kang J-H, Hashizume M: Development of human hepatocellular carcinoma cell-targeted protein cages. Bioconjugate Chem. 2012, 23: 1494-1501. 10.1021/bc300015f.
Article
Google Scholar
Cho K, Wang X, Nie S, Chen Z, Shin DM: Therapeutic nanoparticles for drug delivery in cancer. Clin Cancer Res. 2008, 14: 1310-1316. 10.1158/1078-0432.CCR-07-1441.
Article
Google Scholar
Brigger I, Dubernet C, Couvreur P: Nanoparticles in cancer therapy and diagnosis. Adv Drug Deliver Rev. 2002, 54: 631-651. 10.1016/S0169-409X(02)00044-3.
Article
Google Scholar
Farokhzad OC, Langer R: Impact of nanotechnology on drug delivery. ACS Nano. 2009, 3: 16-20. 10.1021/nn900002m.
Article
Google Scholar
Aime S, Frullano L, Geninatti Crich S: Compartmentalization of a gadolinium complex in the apoferritin cavity: a route to obtain high relaxivity contrast agents for magnetic resonance imaging. Angew Chemie Int Ed. 2002, 41: 1017-1019. 10.1002/1521-3773(20020315)41:6<1017::AID-ANIE1017>3.0.CO;2-P.
Article
Google Scholar
Stephanopoulos N, Tong GJ, Hsiao SC, Francis MB: Dual-surface modified virus capsids for targeted delivery of photodynamic agents to cancer cells. ACS Nano. 2010, 4: 6014-6020. 10.1021/nn1014769.
Article
Google Scholar
Kwon C, Kang YJ, Jeon S, Jung S, Hong SY, Kang S: Development of protein-cage-based delivery nanoplatforms by polyvalently displaying β-cyclodextrins on the surface of ferritins through Copper(I)-Catalyzed Azide/Alkyne cycloaddition. Macromol Biosci. 2012, 12: 1452-1458. 10.1002/mabi.201200178.
Article
Google Scholar
Uchida M, Flenniken ML, Allen M, Willits DA, Crowley BE, Brumfield S, Willis AF, Jackiw L, Jutila M, Young MJ, Douglas T: Targeting of cancer cells with ferrimagnetic ferritin cage nanoparticles. J Am Chem Soc. 2006, 128: 16626-16633. 10.1021/ja0655690.
Article
Google Scholar
Moon H, Kim WG, Lim S, Kang YJ, Shin H-H, Ko H, Hong SY, Kang S: Fabrication of uniform layer-by-layer assemblies with complementary protein cage nanobuilding blocks via simple His-tag/metal recognition. J Mater Chem B. 2013, 1: 4504-4510. 10.1039/c3tb20554a.
Article
Google Scholar
Lucon J, Qazi S, Uchida M, Bedwell GJ, LaFrance B, Prevelige PE, Douglas T: Use of the interior cavity of the P22 capsid for site-specific initiation of atom-transfer radical polymerization with high-density cargo loading. Nat Chem. 2012, 4: 781-788. 10.1038/nchem.1442.
Article
Google Scholar
Destito G, Yeh R, Rae CS, Finn MG, Manchester M: Folic acid-mediated targeting of cowpea mosaic virus particles to tumor cells. Chem Biol. 2007, 14: 1152-1162. 10.1016/j.chembiol.2007.08.015.
Article
Google Scholar
Zeng Q, Wen H, Wen Q, Chen X, Wang Y, Xuan W, Liang J, Wan S: Cucumber mosaic virus as drug delivery vehicle for doxorubicin. Biomaterials. 2013, 34: 4632-4642. 10.1016/j.biomaterials.2013.03.017.
Article
Google Scholar
Banerjee D, Liu AP, Voss NR, Schmid SL, Finn MG: Multivalent display and receptor-mediated endocytosis of transferrin on virus-like particles. ChemBioChem. 2010, 11: 1273-1279. 10.1002/cbic.201000125.
Article
Google Scholar
Ra J-S, Shin H-H, Kang S, Do Y: Lumazine synthase protein cage nanoparticles as antigen delivery nanoplatforms for dendritic cell-based vaccine development. Clin Exp Vaccine Res. 2014, 3: 227-234. 10.7774/cevr.2014.3.2.227.
Article
Google Scholar
Min J, Kim S, Lee J, Kang S: Lumazine synthase protein cage nanoparticles as modular delivery platforms for targeted drug delivery. RSC Advances. 2014, 4: 48596-48600. 10.1039/C4RA10187A.
Article
Google Scholar
Moon H, Lee J, Min J, Kang S: Developing genetically engineered encapsulin protein cage nanoparticles as a targeted delivery nanoplatform. Biomacromolecules. 2014, 15: 3794-3801. 10.1021/bm501066m.
Article
Google Scholar
Sutter M, Boehringer D, Gutmann S, Gunther S, Prangishvili D, Loessner MJ, Stetter KO, Weber-Ban E, Ban N: Structural basis of enzyme encapsulation into a bacterial nanocompartment. Nat Struct Mol Biol. 2008, 15: 939-947. 10.1038/nsmb.1473.
Article
Google Scholar
Rahmanpour R, Bugg TDH: Assembly in vitro of Rhodococcus jostii RHA1 encapsulin and peroxidase DypB to form a nanocompartment. FEBS J. 2013, 280: 2097-2104. 10.1111/febs.12234.
Article
Google Scholar
Kang YJ, Uchida M, Shin H-H, Douglas T, Kang S: Biomimetic FePt nanoparticle synthesis within Pyrococcus furiosus ferritins and their layer-by-layer formation. Soft Matter. 2011, 7: 11078-11081. 10.1039/c1sm06319g.
Article
Google Scholar
Jeong YJ, Kang HJ, Bae KH, Kim MG, Chung SJ: Efficient selection of IgG Fc domain-binding peptides fused to fluorescent protein using E. coli expression system and dot-blotting assay. Peptides. 2010, 31: 202-206. 10.1016/j.peptides.2009.12.009.
Article
Google Scholar
Jung YW, Kang HJ, Lee JM, Jung SO, Yun WS, Chung SJ, Chung BH: Controlled antibody immobilization onto immunoanalytical platforms by synthetic peptide. Anal Biochem. 2008, 374: 99-105. 10.1016/j.ab.2007.10.022.
Article
Google Scholar
Tatur J, Hagen WR, Matias PM: Crystal structure of the ferritin from the hyperthermophilic archaeal anaerobe Pyrococcus furiosus. J Biol Inorg Chem. 2007, 12: 615-630. 10.1007/s00775-007-0212-3.
Article
Google Scholar
Kang S, Suci PA, Broomell CC, Iwahori K, Kobayashi M, Yamashita I, Young M, Douglas T: Janus-like protein cages. Spatially controlled dual-functional surface modifications of protein cages. Nano Lett. 2009, 9: 2360-2366. 10.1021/nl9009028.
Article
Google Scholar