Hamblin MR, Mróz P: Advances in Photodynamic Therapy : Basic, Translational, and Clinical. 2008, Boston, Mass: Artech House
Google Scholar
Juarranz A, Jaen P, Sanz-Rodriguez F, Cuevas J, Gonzalez S: Photodynamic therapy of cancer. Basic principles and applications. Clin Transl Oncol Off Publ Federation Spanish Oncol Soc National Cancer Institute Mexico. 2008, 10: 148-154.
Google Scholar
MacDonald IJ, Dougherty TJ: Basic principles of photodynamic therapy. J Porphyr Phthalocya. 2001, 5: 105-129. 10.1002/jpp.328.
Article
Google Scholar
Dougherty TJ, Gomer CJ, Henderson BW, Jori G, Kessel D, Korbelik M, Moan J, Peng Q: Photodynamic therapy. J Natl Cancer Inst. 1998, 90: 889-905. 10.1093/jnci/90.12.889.
Article
Google Scholar
Zimcik P, Miletin M: Photodynamic therapy as a new prospective method for cancer treatment. I. History, basic principles. Ceska Slovenska Farmacie Casopis Ceske Farmaceuticke Spolecnosti Slovenske Farmaceuticke Spolecnosti. 2004, 53: 219-224.
Google Scholar
Wilson BC: Photodynamic therapy for cancer: principles. Can J Gastroenterol J Can Gastroenterol. 2002, 16: 393-396.
Google Scholar
Dolmans DE, Fukumura D, Jain RK: Photodynamic therapy for cancer. Nat Rev Cancer. 2003, 3: 380-387. 10.1038/nrc1071.
Article
Google Scholar
Sutedja TG, Postmus PE: Photodynamic therapy in lung cancer. A review. J Photochem Photobiol B. 1996, 36: 199-204. 10.1016/S1011-1344(96)07372-1.
Article
Google Scholar
Senior K: Photodynamic therapy for bladder cancer. Lancet oncol. 2005, 6: 546-
Article
Google Scholar
Biel MA: Photodynamic therapy of head and neck cancers. Methods Mol Biol. 2010, 635: 281-293. 10.1007/978-1-60761-697-9_18.
Article
Google Scholar
Goff BA, Blake J, Bamberg MP, Hasan T: Treatment of ovarian cancer with photodynamic therapy and immunoconjugates in a murine ovarian cancer model. Br J Cancer. 1996, 74: 1194-1198. 10.1038/bjc.1996.516.
Article
Google Scholar
Muschter R: Photodynamic therapy: a new approach to prostate cancer. Current Urol Reports. 2003, 4: 221-228. 10.1007/s11934-003-0073-4.
Article
Google Scholar
Roberts DJ, Cairnduff F: Photodynamic therapy of primary skin cancer: a review. Br J Plast Surg. 1995, 48: 360-370. 10.1016/S0007-1226(95)90065-9.
Article
Google Scholar
Guleng GE, Helsing P: Photodynamic therapy for basal cell carcinomas in organ-transplant recipients. Clin Exp Dermatol. 2012, 37: 367-369. 10.1111/j.1365-2230.2011.04248.x.
Article
Google Scholar
Konan YN, Gurny R, Allemann E: State of the art in the delivery of photosensitizers for photodynamic therapy. J Photoch Photobio B. 2002, 66: 89-106. 10.1016/S1011-1344(01)00267-6.
Article
Google Scholar
Nowis D, Makowski M, Stoklosa T, Legat M, Issat T, Golab J: Direct tumor damage mechanisms of photodynamic therapy. Acta Biochim Pol. 2005, 52: 339-352.
Google Scholar
Milla Sanabria L, Rodriguez ME, Cogno IS, Rumie Vittar NB, Pansa MF, Lamberti MJ, Rivarola VA: Direct and indirect photodynamic therapy effects on the cellular and molecular components of the tumor microenvironment. Biochim Biophys Acta. 1835, 2013: 36-45.
Google Scholar
Krammer B: Vascular effects of photodynamic therapy. Anticancer Res. 2001, 21: 4271-4277.
Google Scholar
Vancikova Z: Principles of the photodynamic therapy and its impact on the immune system. Sb Lek. 1998, 99: 1-11.
Google Scholar
Nowis D, Stoklosa T, Legat M, Issat T, Jakobisiak M, Golab J: The influence of photodynamic therapy on the immune response. Photodiagnosis Photodyn Ther. 2005, 2: 283-298. 10.1016/S1572-1000(05)00098-0.
Article
Google Scholar
Detty MR, Gibson SL, Wagner SJ: Current clinical and preclinical photosensitizers for use in photodynamic therapy. J Med Chem. 2004, 47: 3897-3915. 10.1021/jm040074b.
Article
Google Scholar
O'Connor AE, Gallagher WM, Byrne AT: Porphyrin and nonporphyrin photosensitizers in oncology: preclinical and clinical advances in photodynamic therapy. Photochem Photobiol. 2009, 85: 1053-1074. 10.1111/j.1751-1097.2009.00585.x.
Article
Google Scholar
Ethirajan M, Chen Y, Joshi P, Pandey RK: The role of porphyrin chemistry in tumor imaging and photodynamic therapy. Chem Soc Rev. 2011, 40: 340-362. 10.1039/b915149b.
Article
Google Scholar
Daicoviciu D, Filip A, Ion RM, Clichici S, Decea N, Muresan A: Oxidative photodamage induced by photodynamic therapy with methoxyphenyl porphyrin derivatives in tumour-bearing rats. Folia Biol. 2011, 57: 12-19.
Google Scholar
Pandey RK, Bellnier DA, Smith KM, Dougherty TJ: Chlorin and porphyrin derivatives as potential photosensitizers in photodynamic therapy. Photochem Photobiol. 1991, 53: 65-72. 10.1111/j.1751-1097.1991.tb08468.x.
Article
Google Scholar
Spikes JD: Phthalocyanines as photosensitizers in biological systems and for the photodynamic therapy of tumors. Photochem Photobiol. 1986, 43: 691-699. 10.1111/j.1751-1097.1986.tb05648.x.
Article
Google Scholar
Moeno S, Krause RW, Ermilov EA, Kuzyniak W, Hopfner M: Synthesis and characterization of novel zinc phthalocyanines as potential photosensitizers for photodynamic therapy of cancers. Photochem Photobiol Sci. 2014, 13: 963-970. 10.1039/c3pp50393c.
Article
Google Scholar
Durmus M, Ahsen V: Water-soluble cationic gallium(III) and indium(III) phthalocyanines for photodynamic therapy. J Inorg Biochem. 2010, 104: 297-309. 10.1016/j.jinorgbio.2009.12.011.
Article
Google Scholar
Kreimer-Birnbaum M: Modified porphyrins, chlorins, phthalocyanines, and purpurins: second-generation photosensitizers for photodynamic therapy. Semin Hematol. 1989, 26: 157-173.
Google Scholar
O'Neal WG, Roberts WP, Ghosh I, Wang H, Jacobi PA: Studies in chlorin chemistry. 3. A practical synthesis of c, d-ring symmetric chlorins of potential utility in photodynamic therapy. J Org Chem. 2006, 71: 3472-3480. 10.1021/jo060041z.
Article
Google Scholar
Vrouenraets MB, Visser GW, Snow GB, van Dongen GA: Basic principles, applications in oncology and improved selectivity of photodynamic therapy. Anticancer Res. 2003, 23: 505-522.
Google Scholar
Liebmann J, Cook JA, Mitchell JB: Cremophor EL, solvent for paclitaxel, and toxicity. Lancet. 1993, 342: 1428-
Article
Google Scholar
Gelderblom H, Verweij J, Nooter K, Sparreboom A: Cremophor EL: the drawbacks and advantages of vehicle selection for drug formulation. Eur J Cancer. 2001, 37: 1590-1598. 10.1016/S0959-8049(01)00171-X.
Article
Google Scholar
Derycke AS, de Witte PA: Liposomes for photodynamic therapy. Adv Drug Deliv Rev. 2004, 56: 17-30. 10.1016/j.addr.2003.07.014.
Article
Google Scholar
Broekgaarden M, de Kroon AI, Gulik TM, Heger M: Development and in vitro proof-of-concept of interstitially targeted zinc- phthalocyanine liposomes for photodynamic therapy. Curr Med Chem. 2013, 21: 377-391. 10.2174/09298673113209990211.
Article
Google Scholar
Bovis MJ, Woodhams JH, Loizidou M, Scheglmann D, Bown SG, Macrobert AJ: Improved in vivo delivery of m-THPC via pegylated liposomes for use in photodynamic therapy. J Control Release. 2012, 157: 196-205. 10.1016/j.jconrel.2011.09.085.
Article
Google Scholar
Ricci-Junior E, Marchetti JM: Preparation, characterization, photocytotoxicity assay of PLGA nanoparticles containing zinc (II) phthalocyanine for photodynamic therapy use. J Microencapsul. 2006, 23: 523-538. 10.1080/02652040600775525.
Article
Google Scholar
Ricci-Junior E, Marchetti JM: Zinc(II) phthalocyanine loaded PLGA nanoparticles for photodynamic therapy use. Int J Pharm. 2006, 310: 187-195. 10.1016/j.ijpharm.2005.10.048.
Article
Google Scholar
Chatterjee DK, Fong LS, Zhang Y: Nanoparticles in photodynamic therapy: an emerging paradigm. Adv Drug Deliv Rev. 2008, 60: 1627-1637. 10.1016/j.addr.2008.08.003.
Article
Google Scholar
Lee YE, Kopelman R: Polymeric nanoparticles for photodynamic therapy. Methods Mol Biol. 2011, 726: 151-178. 10.1007/978-1-61779-052-2_11.
Article
Google Scholar
Chung CW, Chung KD, Jeong YI, Kang DH: 5-aminolevulinic acid-incorporated nanoparticles of methoxy poly(ethylene glycol)-chitosan copolymer for photodynamic therapy. Int J Nanomedicine. 2013, 8: 809-819.
Article
Google Scholar
Taillefer J, Brasseur N, van Lier JE, Lenaerts V, Le Garrec D, Leroux JC: In-vitro and in-vivo evaluation of pH-responsive polymeric micelles in a photodynamic cancer therapy model. J Pharmacy Pharmacol. 2001, 53: 155-166. 10.1211/0022357011775352.
Article
Google Scholar
Gibot L, Lemelle A, Till U, Moukarzel B, Mingotaud AF, Pimienta V, Saint-Aguet P, Rols MP, Gaucher M, Violleau F, Chassenieux C, Vicendo P: Polymeric micelles encapsulating photosensitizer: structure/photodynamic therapy efficiency relation. Biomacromolecules. 2014, 15: 1443-1455. 10.1021/bm5000407.
Article
Google Scholar
Koo H, Lee H, Lee S, Min KH, Kim MS, Lee DS, Choi Y, Kwon IC, Kim K, Jeong SY: In vivo tumor diagnosis and photodynamic therapy via tumoral pH-responsive polymeric micelles. Chem Commun (Camb). 2010, 46: 5668-5670. 10.1039/c0cc01413c.
Article
Google Scholar
van Nostrum CF: Polymeric micelles to deliver photosensitizers for photodynamic therapy. Adv Drug Deliv Rev. 2004, 56: 9-16. 10.1016/j.addr.2003.07.013.
Article
Google Scholar
Maeda H: The enhanced permeability and retention (EPR) effect in tumor vasculature: the key role of tumor-selective macromolecular drug targeting. Adv Enzyme Regul. 2001, 41: 189-207. 10.1016/S0065-2571(00)00013-3.
Article
Google Scholar
Nehoff H, Parayath NN, Domanovitch L, Taurin S, Greish K: Nanomedicine for drug targeting: strategies beyond the enhanced permeability and retention effect. Int J Nanomedicine. 2014, 9: 2539-2555.
Google Scholar
Li F, Bae BC, Na K: Acetylated hyaluronic acid/photosensitizer conjugate for the preparation of nanogels with controllable phototoxicity: synthesis, characterization, autophotoquenching properties, and in vitro phototoxicity against HeLa cells. Bioconjug Chem. 2010, 21: 1312-1320. 10.1021/bc100116v.
Article
Google Scholar
Bae BC, Na K: Self-quenching polysaccharide-based nanogels of pullulan/folate-photosensitizer conjugates for photodynamic therapy. Biomaterials. 2010, 31: 6325-6335. 10.1016/j.biomaterials.2010.04.030.
Article
Google Scholar
Li L, Bae BC, Tran TH, Yoon KH, Na K, Huh KM: Self-quenchable biofunctional nanoparticles of heparin-folate-photosensitizer conjugates for photodynamic therapy. Carbohyd Polym. 2011, 86: 708-715. 10.1016/j.carbpol.2011.05.011.
Article
Google Scholar
Oh IH, Min HS, Li L, Tran TH, Lee YK, Kwon IC, Choi K, Kim K, Huh KM: Cancer cell-specific photoactivity of pheophorbide a-glycol chitosan nanoparticles for photodynamic therapy in tumor-bearing mice. Biomaterials. 2013, 34: 6454-6463. 10.1016/j.biomaterials.2013.05.017.
Article
Google Scholar
Kim WL, Cho H, Li L, Kang HC, Huh KM: Biarmed poly(ethylene glycol)-(pheophorbide a)2 conjugate as a bioactivatable delivery carrier for photodynamic therapy. Biomacromolecules. 2014, 15: 2224-2234. 10.1021/bm5003619.
Article
Google Scholar
Park W, Park SJ, Na K: The controlled photoactivity of nanoparticles derived from ionic interactions between a water soluble polymeric photosensitizer and polysaccharide quencher. Biomaterials. 2011, 32: 8261-8270. 10.1016/j.biomaterials.2011.07.023.
Article
Google Scholar
Li L, Nurunnabi M, Nafiujjaman M, Lee YK, Huh KM: GSH-mediated photoactivity of pheophorbide a-conjugated heparin/gold nanoparticle for photodynamic therapy. J Control Release. 2013, 171: 241-250. 10.1016/j.jconrel.2013.07.002.
Article
Google Scholar
Li L, Md N, Md N, Jeong YY, Lee YK, Huh KM: A photosensitizer-conjugated magnetic iron oxide/gold hybrid nanoparticle as an activatable platform for photodynamic cancer therapy. J Mater Chem B. 2014, 2: 2929-2937. 10.1039/c4tb00181h.
Article
Google Scholar
Matsumura Y, Maeda H: A new concept for macromolecular therapeutics in cancer chemotherapy: mechanism of tumoritropic accumulation of proteins and the antitumor agent smancs. Cancer Res. 1986, 46: 6387-6392.
Google Scholar
Maeda H, Matsumura Y: Tumoritropic and lymphotropic principles of macromolecular drugs. Crit Rev Ther Drug Carrier Syst. 1989, 6: 193-210.
Google Scholar
Ben-Dror S, Bronshtein I, Wiehe A, Roder B, Senge MO, Ehrenberg B: On the correlation between hydrophobicity, liposome binding and cellular uptake of porphyrin sensitizers. Photochem Photobiol. 2006, 82: 695-701. 10.1562/2005-09-01-RA-669.
Article
Google Scholar
Love WG, Duk S, Biolo R, Jori G, Taylor PW: Liposome-mediated delivery of photosensitizers: localization of zinc (II)-phthalocyanine within implanted tumors after intravenous administration. Photochem Photobiol. 1996, 63: 656-661. 10.1111/j.1751-1097.1996.tb05670.x.
Article
Google Scholar
Casas A, Batlle A: Aminolevulinic acid derivatives and liposome delivery as strategies for improving 5-aminolevulinic acid-mediated photodynamic therapy. Curr Med Chem. 2006, 13: 1157-1168. 10.2174/092986706776360888.
Article
Google Scholar
Richter AM, Waterfield E, Jain AK, Canaan AJ, Allison BA, Levy JG: Liposomal delivery of a photosensitizer, benzoporphyrin derivative monoacid ring A (BPD), to tumor tissue in a mouse tumor model. Photochem Photobiol. 1993, 57: 1000-1006. 10.1111/j.1751-1097.1993.tb02962.x.
Article
Google Scholar
Namiki Y, Namiki T, Date M, Yanagihara K, Yashiro M, Takahashi H: Enhanced photodynamic antitumor effect on gastric cancer by a novel photosensitive stealth liposome. Pharmacol Res Off J Ital Pharmacol Soc. 2004, 50: 65-76.
Google Scholar
Sibani SA, McCarron PA, Woolfson AD, Donnelly RF: Photosensitiser delivery for photodynamic therapy. Part 2: systemic carrier platforms. Expert Opin Drug Deliv. 2008, 5: 1241-1254. 10.1517/17425240802444673.
Article
Google Scholar
Chan JM, Valencia PM, Zhang L, Langer R, Farokhzad OC: Polymeric nanoparticles for drug delivery. Methods Mol Biol. 2010, 624: 163-175. 10.1007/978-1-60761-609-2_11.
Article
Google Scholar
Veronese FM, Pasut G: PEGylation, successful approach to drug delivery. Drug Discov Today. 2005, 10: 1451-1458. 10.1016/S1359-6446(05)03575-0.
Article
Google Scholar
Jain A, Jain SK: PEGylation: an approach for drug delivery. A review. Crit Rev Ther Drug Carrier Syst. 2008, 25: 403-447. 10.1615/CritRevTherDrugCarrierSyst.v25.i5.10.
Article
Google Scholar
Kumari A, Yadav SK, Yadav SC: Biodegradable polymeric nanoparticles based drug delivery systems. Colloids Surf B: Biointerfaces. 2010, 75: 1-18. 10.1016/j.colsurfb.2009.09.001.
Article
Google Scholar
Allemann E, Brasseur N, Benrezzak O, Rousseau J, Kudrevich SV, Boyle RW, Leroux JC, Gurny R, Van Lier JE: PEG-coated poly(lactic acid) nanoparticles for the delivery of hexadecafluoro zinc phthalocyanine to EMT-6 mouse mammary tumours. J Pharmacy Pharmacol. 1995, 47: 382-387. 10.1111/j.2042-7158.1995.tb05815.x.
Article
Google Scholar
Konan YN, Berton M, Gurny R, Allemann E: Enhanced photodynamic activity of meso-tetra(4-hydroxyphenyl)porphyrin by incorporation into sub-200 nm nanoparticles. Eur J Pharm Sci. 2003, 18: 241-249. 10.1016/S0928-0987(03)00017-4.
Article
Google Scholar
Konan YN, Cerny R, Favet J, Berton M, Gurny R, Allemann E: Preparation and characterization of sterile sub-200 nm meso-tetra(4-hydroxylphenyl)porphyrin-loaded nanoparticles for photodynamic therapy. Eur J Pharm Biopharm Off J Arbeitsgemeinschaft Pharm Verfahrenstechnik eV. 2003, 55: 115-124.
Article
Google Scholar
Aliabadi HM, Lavasanifar A: Polymeric micelles for drug delivery. Expert Opin Drug Deliv. 2006, 3: 139-162. 10.1517/17425247.3.1.139.
Article
Google Scholar
Nishiyama N, Kataoka K: Current state, achievements, and future prospects of polymeric micelles as nanocarriers for drug and gene delivery. Pharmacol Ther. 2006, 112: 630-648. 10.1016/j.pharmthera.2006.05.006.
Article
Google Scholar
Li B, Moriyama EH, Li F, Jarvi MT, Allen C, Wilson BC: Diblock copolymer micelles deliver hydrophobic protoporphyrin IX for photodynamic therapy. Photochem Photobiol. 2007, 83: 1505-1512. 10.1111/j.1751-1097.2007.00194.x.
Article
Google Scholar
Shieh MJ, Peng CL, Chiang WL, Wang CH, Hsu CY, Wang SJ, Lai PS: Reduced skin photosensitivity with meta-tetra(hydroxyphenyl)chlorin-loaded micelles based on a poly(2-ethyl-2-oxazoline)-b-poly(d, l-lactide) diblock copolymer in vivo. Mol Pharm. 2010, 7: 1244-1253. 10.1021/mp100060v.
Article
Google Scholar
Knop K, Mingotaud AF, El-Akra N, Violleau F, Souchard JP: Monomeric pheophorbide(a)-containing poly(ethyleneglycol-b-epsilon-caprolactone) micelles for photodynamic therapy. Photochem Photobiol Sci. 2009, 8: 396-404. 10.1039/b811248g.
Article
Google Scholar
Li L, Cho H, Yoon KH, Kang HC, Huh KM: Antioxidant-photosensitizer dual-loaded polymeric micelles with controllable production of reactive oxygen species. Int J Pharm. 2014, 471: 339-348. 10.1016/j.ijpharm.2014.05.064.
Article
Google Scholar
Muthiah M, Park SH, Nurunnabi M, Lee J, Lee YK, Park H, Lee BI, Min JJ, Park IK: Intracellular delivery and activation of the genetically encoded photosensitizer Killer Red by quantum dots encapsulated in polymeric micelles. Colloid Surface B Biointerfaces. 2014, 116: 284-294.
Article
Google Scholar
Bulina ME, Chudakov DM, Britanova OV, Yanushevich YG, Staroverov DB, Chepurnykh TV, Merzlyak EM, Shkrob MA, Lukyanov S, Lukyanov KA: A genetically encoded photosensitizer. Nat Biotechnol. 2006, 24: 95-99. 10.1038/nbt1175.
Article
Google Scholar
Liao ZX, Li YC, Lu HM, Sung HW: A genetically-encoded KillerRed protein as an intrinsically generated photosensitizer for photodynamic therapy. Biomaterials. 2014, 35: 500-508. 10.1016/j.biomaterials.2013.09.075.
Article
Google Scholar
Pletnev S, Gurskaya NG, Pletneva NV, Lukyanov KA, Chudakov DM, Martynov VI, Popov VO, Kovalchuk MV, Wlodawer A, Dauter Z, Pletnev V: Structural basis for phototoxicity of the genetically encoded photosensitizer KillerRed. J Biol Chem. 2009, 284: 32028-32039. 10.1074/jbc.M109.054973.
Article
Google Scholar
Ryumina AP, Serebrovskaya EO, Shirmanova MV, Snopova LB, Kuznetsova MM, Turchin IV, Ignatova NI, Klementieva NV, Fradkov AF, Shakhov BE, Zagaynova EV, Lukyanov KA, Lukyanov SA: Flavoprotein miniSOG as a genetically encoded photosensitizer for cancer cells. Biochim Biophys Acta. 1830, 2013: 5059-5067.
Google Scholar
Verhille M, Couleaud P, Vanderesse R, Brault D, Barberi-Heyob M, Frochot C: Modulation of photosensitization processes for an improved targeted photodynamic therapy. Curr Med Chem. 2010, 17: 3925-3943. 10.2174/092986710793205453.
Article
Google Scholar
Lovell JF, Liu TWB, Chen J, Zheng G: Activatable Photosensitizers for Imaging and Therapy. Chem Rev. 2010, 110: 2839-2857. 10.1021/cr900236h.
Article
Google Scholar
Bugaj AM: Targeted photodynamic therapy–a promising strategy of tumor treatment. Photochem Photobiol Sci. 2011, 10: 1097-1109. 10.1039/c0pp00147c.
Article
Google Scholar
McCarthy JR, Weissleder R: Model systems for fluorescence and singlet oxygen quenching by metalloporphyrins. ChemMedChem. 2007, 2: 360-365. 10.1002/cmdc.200600244.
Article
Google Scholar
Lovell JF, Chen J, Jarvi MT, Cao WG, Allen AD, Liu Y, Tidwell TT, Wilson BC, Zheng G: FRET quenching of photosensitizer singlet oxygen generation. J Phys Chem B. 2009, 113: 3203-3211. 10.1021/jp810324v.
Article
Google Scholar
Lee SJ, Koo H, Lee DE, Min S, Lee S, Chen X, Choi Y, Leary JF, Park K, Jeong SY, Kwon IC, Kim K, Choi K: Tumor-homing photosensitizer-conjugated glycol chitosan nanoparticles for synchronous photodynamic imaging and therapy based on cellular on/off system. Biomaterials. 2011, 32: 4021-4029. 10.1016/j.biomaterials.2011.02.009.
Article
Google Scholar
Gamcsik MP, Kasibhatla MS, Teeter SD, Colvin OM: Glutathione levels in human tumors. Biomarkers. 2012, 17: 671-691. 10.3109/1354750X.2012.715672.
Article
Google Scholar