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Abstract

Sub-microfibers and nanofibers have a high surface-to-volume ratio, which makes them suitable for diverse
applications including environmental remediation and filtration, energy production and storage, electronic and
optical sensors, tissue engineering, and drug delivery. However, the use of such materials is limited by the
low throughput of established manufacturing technologies. This short report provides an overview of current
production methods for sub-microfibers and nanofibers and then introduces a new melt-electrospinning
prototype based on a spinneret with 600 nozzles, thereby providing an important step towards larger-scale
production. The prototype features an innovative collector that achieves the optimal spreading of the fiber
due to its uneven surface, as well as a polymer inlet that ensures even polymer distribution to all nozzles. We
prepared a first generation of biobased fibers with diameters ranging from 1.000 to 7.000 um using polylactic
acid and 6% (w/w) sodium stearate, but finer fibers could be produced in the future by optimizing the
prototype and the composition of the raw materials. Melt electrospinning using the new prototype is a
promising method for the production of high-quality sub-microfibers and nanofibers.

Keywords: Fiber spinning, Nanotechnology, Polylactic acid, Nanofiber nonwoven, Eco-friendly production, Melt
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Introduction

Nanotechnology can be generally defined as the develop-
ment, handling and control of structures or materials with
at least one dimension within the size range 1-100 nm,
and the advent of precision tools for nanoscale engineer-
ing has promoted great interest in this emerging field over
the last 30 years [1, 2]. Nanotechnology exploits the prop-
erties of materials that depend on size or structure, par-
ticularly properties that differ from the behavior of
individual atoms/molecules or larger masses of the same
material [2]. The term “nanofiber” is frequently used in
the literature to describe very thin fibers without a speci-
fied size limit, but a stricter definition as used by the
Deutsches Institut fiir Normung (DIN) standard among
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others is a structure with two external nanoscale dimen-
sions and a third external dimension that is considerably
larger than the nanoscale [3]. However, a comparison of
many studies shows that the same term is often used as
soon as the fiber diameter falls below 1 pm [4]. Although
such fibers are not nanofibers according to the DIN stand-
ard, the designation has become established and consoli-
dated in recent years. With respect to the DIN standard,
another term used to describe fibers with a diameter in
the hundreds of nanometers range is “sub-microfiber”.
The small diameter of sub-microfibers and nanofibers
provides a high surface-to-volume ratio while maintain-
ing or even improving flexibility compared to conven-
tional fibers. Additionally, many production methods
yield porous fibers thus increasing the surface area even
further [5]. These properties make such fibers extremely
versatile. Their diverse applications include air and water
filtration [6, 7], the separation of water/oil and air/oil
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mixtures [4, 8], technical uses such as the development
of lithium-air batteries [9-12], optical sensors [13] and
textiles [5, 14], and medical applications such as tissue
engineering [15-23], drug delivery [18, 19, 24-36], and
the diagnosis and treatment of cancer [27, 36—40] (Fig. 1)
[41]. The applications of sub-microfibers and nanofibers
depend on their physical and mechanical properties,
which in turn depend on the manufacturing process.
This short report provides an overview of current pro-
duction methods before describing a novel and scalable
melt-electrospinning prototype device and its deploy-
ment for the processing of biobased materials into
fibers.

Current manufacturing processes for sub-
microfibers and nanofibers

Sub-microfibers and nanofibers can be produced from a
range of biomaterials, such as polysaccharides (e.g. chi-
tosan, cellulose, or alginate) and proteins (e.g. gelatin,
keratin, or collagen), as well as synthetic polymers, such
as polycaprolactone (PCL), polyurethane (PU), polylactic
acid (PLA), and poly(lactic-co-glycolic) acid (PLGA).
Figure 2 provides an overview of current major nanofi-
ber production technologies and the fiber diameters that
have typically been achieved using those methods. Only
the most common processes are mentioned and there
are many variants of these methods that we do not dis-
cuss in detail [42-50].

Electrospinning is the most common production
method for sub-microfibers and nanofibers, and two
fundamental techniques can be distinguished: solution
electrospinning and melt electrospinning. Electrospin-
ning combines a strong electrostatic field with the
principle of Taylor cone formation. When a droplet of
a liquid becomes charged in a field of sufficient
strength, the electrostatic repulsion is strong enough
to overcome the surface tension and the droplet is
stretched. If the charge reaches a certain threshold, a
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jet erupts from the liquid droplet and this is known
as a Taylor cone [51-53]. If the liquid is viscous and
cohesive, the jet does not break up into droplets (the
principle of electro-spraying) but forms an electrically
charged laminar jet, which elongates due to electro-
static repulsion. The jet dries (in the case of solution
electrospinning) or cools sufficiently to become solid
(in the case of melt electrospinning) and a nanoscale
fiber is produced [54]. The basic setup for electro-
spinning is shown in Fig. 3. Solution electrospinning
is used more frequently than melt electrospinning for
the production of nanofibers because a smaller fiber
diameter can be achieved (high hundreds of nanome-
ters), and the equipment has a simpler design and
higher productivity compared to current melt electro-
spinning devices [55]. The finest fiber produced by
melt electrospinning thus far was 80 nm in diameter
[56], although this in not yet routine and typically the
fiber diameter is >2 pum [45]. The major advantage of
melt electrospinning is that it does not require a solv-
ent, avoiding any risk of toxic solvents being carried

Table 1 Overview of electrospinning methods, typical fiber diameters and applications

Publication Production Polymer Fiber diameter Application
method (nm]

Wang 2002 Solution Poly(acrylic acid) — poly 100-300 Optical sensors

[12] (pyrene methanol)

Li 2012 [87] Melt (laser melt) Poly(L-lactic acid) 2000-7000 Biomedical

Dalton 2006 Melt Poly(ethylene glycol) and

[89] poly(epsilon-caprolactone)

Yoon 2013 [90] Melt and S/M-hybrid Silk fibroin and poly PLA: 8900 Biomedical (scaffolding)
(L-lactic acid) SF: 820

Zhou 2006 [91] Melt Poly(L-lactic acid) Filtration

Kim 2010 S/M hybrid Poly(lactic-co-glycolic acid) 2800 (S) Biomedical (scaffolding)

530 (M)
Scholten 2011 Solution Polyurethane Low 1000s Air filtration (removal of volatile organic compounds

(7]
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over into the mature fiber [57]. Electrospinning is
compatible with many different polymers and multiple
applications (Table 1).

Another common method for nanofiber production is
fiber drawing. Here, a solid tip is placed in contact with
a liquid polymer and then drawn away, leaving behind a
string of polymer liquid that solidifies into a fiber (Fig. 4).
Like electrospinning, this method is compatible with
polymer melts [58] and polymer solutions [46]. One of
the main advantages of this method is that it allows the
evaluation of single fibers [59]. Drawing typically pro-
duces narrower fibers than electrospinning, with diame-
ters of tens of nanometers (Table 2).

The island-in-the-sea method (Fig. 5) is a subtype of con-
ventional melt spinning, but two different polymers are in-
volved. One of them (the sea polymer) is spun into a thick
fiber within which multiple thinner fibers of the other (the
island polymer) are suspended. Following primary extru-
sion, the sea polymer is removed to leave the nanoscale
island-polymer fibers behind [60]. This method has been
used to create polyamide 6/polyethylene terephthalate
nanofibers with a consistent diameter of 39 nm [61].

Melt-blown fibers are produced by extruding a polymer
melt through small nozzles surrounded by high-speed flow-
ing gas, typically resulting in microfibers approximately
2um in diameter (Fig. 6). However, individual
sub-microfibers/nanofibers with diameters of ~100nm
have been produced using an ideal setup comprising an an-
nual air die, Finaplas polypropylene (PP) with a melt flow
rate (MFR) of 35 as the polymer, a polymer temperature of
290°C, a gas temperature of 400°C and a feed rate of
4.11-10"°kg/s [62]. Like electrospinning, which can be
scaled up by multiplying the number of jets, melt-blowing
can be scaled up by multiplying the number of nozzles to
reduce costs [63]. However, unlike electrospinning, which
can produce aligned fibers, melt-blown fibers are deposited
randomly into non-woven sheets. These are particularly
suitable for filtration applications, but melt blowing cannot
be used for applications that require oriented fiber sheets.

A derivative of the melt-blowing technique is the Laval
spinning method, which also uses an airstream to draw
the fiber from the nozzle [64]. However, the shape of the
longitudinal Laval nozzle accelerates the air, making the
process more efficient than conventional melt-blowing.

Table 2 Overview of non-electrospinning methods, typical fiber diameters and applications

Publication Production method Polymer Fiber diameter [nm] Application
Xing 2008 [58] Drawing Poly(trimethylene terephthalate) 60 Optical fibers
Ma 2016 [46] Drawing Polyethylene 40

Nakata 2007 [61] Island in the sea Polyamide 6/poly(ethylene terephthalate) 39

Uppal 2012 [63] Melt-blown 290 Filtration

Luo [97] Template synthesis Silver/cross-linked poly(vinyl alcohol) Sub-micro Various
Wang 2010 [98] Template synthesis Carbon 20 Various
Rolandi 2014 [99] Self-assembly Chitin various Various

Xu 2017 [100] Self-assembly Polypeptide Drug delivery
Hammami 2014 [74] Centrifugal Polyamide 6 200-800 Various
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Furthermore, a cold airstream is used rather than the
hot airstream of the conventional method (Fig. 7). The
laminar airstream enters the nozzle from the back. The
nozzle narrows just beyond the entrance channel for the
polymer, which accelerates the air stream and the fiber
to supersonic velocity. The main advantage compared to
conventional melt-blowing is that the nozzle diameter
can be much larger, allowing spinning with a high mass
throughput per nozzle [64]. The proprietary Nanoval
process is similar to the Laval method but it produces a
multitude of smaller-diameter fibers that erupt from the
original drawn string when the steadily increasing lam-
inar airflow reaches a particular threshold [65].
Electroblowing is essentially a hybrid of electrospinning
and blowing [64, 66]. The voltage at the spinning nozzle is
sufficient to allow Taylor cone formation. The fiber is then
caught by a low-velocity airstream that carries it away
from the spinneret in a manner similar to conventional
melt blowing. However, in contrast to conventional melt
blowing, electrostatic repulsion is the main force that pulls
the fiber from the nozzle and the purpose of the airflow is
to reduce interference from the electric field of adjacent
nozzles, making the process easier to scale up [64]. Like
electrospinning, electroblowing has two variants: solution

electroblowing and melt electroblowing, the latter illus-
trated in Fig. 8. In both cases, the airstream also cools
down the liquid fiber to solidify it (melt electroblowing) or
to dry it and remove the solvent (solution electroblowing).
Flash spinning is a special form of solution spinning,
in which the solvent is a hydrocarbon such as butane or
isobutene, which would exist as gas under normal at-
mospheric pressure at room temperature. The spinning
solution is maintained under very high pressure at tem-
peratures of 130-500 °C. When the spinning solution is
ejected into an environment with a much lower pressure
and temperature, the fiber dries immediately [67, 68].
Other, lesser-used production methods include tem-
plate synthesis and self-assembly. Template synthesis is
suitable for the production of both fibers and tubules
[50, 69]. It uses the pores of a host material as a tem-
plate to control the growth of new materials [57]. For
example, polymers can be produced electrochemically by
applying a metal layer to a membrane with pores within
which the polymers are synthesized [57]. Figure 9 dem-
onstrates the procedure and shows how the fiber diam-
eter and length are controlled by the pore dimensions.
[70] Self-assembly is used for the production of nanofi-
bers comprising polypeptides with an intrinsic capacity
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Fig. 6 Basic setup of the melt-blowing production method
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for self-assembly [71]. The method is based on the
spontaneous organization of individual macromole-
cules into an ordered and stable nanoscale structure
[41]. A solution is necessary to create the appropriate
environment for the formation of these structures,
which have a potential minimum diameter of 3 nm
[72]. Although very small diameters can be achieved,
this technology is complex and has a low throughput,
making it difficult to scale up and thus unsuitable for
industrial applications [41].

Whereas melt blowing and its variations are easy to
scale up, these methods cannot produce oriented fibers.
In contrast, the other methods can produce oriented
fibers but are hampered by their low throughput. Centri-
fugal spinning can overcome this challenge by mounting
the spinneret on a centrifuge with the nozzles facing
outward [73, 74]. When the centrifugal force (dependent
on the rotor diameter and angular velocity) is sufficient
to overcome the drag caused by the viscosity of the poly-
mer solution or melt, a steady polymer jet streams from
the nozzle to the collector [73, 74]. The centrifugal spin-
ning method is shown in Fig. 10. A derivative of this
method is split-fiber production, where the nozzle is
split into several smaller nozzles to produce narrower fi-
bers or flat bands [75]. The throughput is up to 500-fold
higher than conventional solution electrospinning [76].
However, the use of solvents and the strong dependence
on the elasticity of the polymer solution and the evapor-
ation rate of the solvents make this process difficult to
control [77].

Development of a new melt-electrospinning
prototype for sub-microfibers and nanofibers
Work leading up to the prototype - state of the art
Electrospinning methods allow the production of single or
multiple nanofibers (depending on the number of jets)

Polymer

e
L

Fig. 8 Basic setup of the hybrid melt-electroblowing production method
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using a simple apparatus with relatively low setup and oper-
ating costs, so electrospinning can be an economically com-
petitive production method [78]. The presence of solvent in
the solution electrospinning process adds an expensive re-
covery step to the overall manufacturing process, and the
potential carryover of toxic solvents or solvents with un-
desirable optical activity makes solution electrospinning un-
suitable for medical and filtration applications or the
production of optical sensors. Although the high
temperature, high viscosity and low conductivity of the
molten polymer is a challenge that must be addressed dur-
ing melt electrospinning [79, 80], the absence of solvent en-
sures stable jet formation, allowing the direct deposition of
micrometer to sub-micrometer range fibers and the
reproduction of three-dimensional structures [81-85]. Melt
electrospinning is not compatible with non-thermoplastic
materials, including biological polymers such as collagen,
but is ideal for sparingly-soluble polymers such as PP and

polyethylene. Other commonly used polymers include
PCL, PU, PLA, and PLGA. [86-92].

In order to produce nanoscale fibers, the polymer deliv-
ery rate during melt electrospinning must be significantly
lower than during solution electrospinning, which explains
the absence of melt electrospinning as an industrial manu-
facturing method for nanofibers [4]. However, only 2—10%
of the liquid processed during solution electrospinning is
the polymer (the rest is solvent that evaporates) whereas
100% of the processed liquid solidifies into fibers during
melt electrospinning, indicating that the industrial use of
this method could be achieved by scaling the process up
[4]. Accordingly, recent device innovations, such as
multiple-needle and needleless configurations, have demon-
strated a roadmap to overcome the low throughput of melt
electrospinning, typically in the pg/h range [4]. Prototypes
with umbellate nozzles containing 60 spinnerets can
achieve maximum product deposition rates of ~ 36 g/h [93,

Collectors

Liquid jet

;

Fig. 10 Basic setup of the centrifugal spinning production method

s
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Fig. 11 The 600-nozzle melt-electrospinning prototype developed at the AMIBM
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94]. The largest multi-nozzle spinning device described in
the literature thus far features 64 nozzles [95].

Prototype for the scaled-up melt electrospinning of sub-
microfibers and nanofibers
The Aachen-Maastricht Institute for Biobased Materials
(AMIBM) at Maastricht University has cooperated with
Fourné Maschinenbau GmbH (Alfter-Impekoven, Germany)
and Potter-Klima Gesellschaft fiir Nanoheiztechnik mbH
(Georgsmarienhiitte, Germany) to develop a functional
prototype of a melt-electrospinning device featuring a spin-
neret with 600 nozzles, which vastly exceeds the capabilities
of any state-of-the-art technologies. The nozzle plate of this
device is shown in Fig. 11. Each nozzle has a diameter of
0.3 mm and the nozzles are spaced 8 mm apart.

One of the major challenges when scaling up a
melt-electrospinning device from a smaller number to a
larger number of spinnerets is the uniform distribution of

the melt to all nozzles. The low-volume flow of the poly-
mer melt during melt electrospinning may lead to incom-
plete nozzle filling, resulting in sporadic and
unpredictable pressure losses within each nozzle. Inside
the prototype nozzle, melt flow has been improved by tak-
ing this design consideration into account and introducing
a three-plate construction and two symmetrically designed
polymer inlets. A distributor plate combined with a finely
porous sintered plate ensures the optimum melt distribu-
tion and a uniform pressure build-up over the entire noz-
zle cross-section. A relatively high specific contact load at
the sealing line as well as the use of aluminum flanges
guarantees the sealing of the nozzle plates. The constant
supply of polymer melt is ensured by a speed-adjustable
single-screw extruder and spinning pump.

Another challenge addressed by the new prototype is
the tendency for solidified polymer to block the capillaries.
The integration of heating elements around the spinneret

Fig. 12 Comparison of (a) a conventional collector and (b) the novel collector designed for the 600-nozzle AMIBM melt-electrospinning prototype
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Fig. 13 PLA microfibers containing 6% (w/w) sodium stearate produced using the 600-nozzle AMIBM melt-electrospinning prototype

achieves a uniform polymer melt flow from the nozzles to
prevent this common problem during fiber production. A
collector with an uneven surface is used instead of a con-
ventional plate collector to facilitate the optimal spreading
of the collected fibers (Fig. 12). With the nozzle/collector
pairing installed in the prototype, nonwovens can be pro-
duced continuously over a width of 340 mm. The collector
is connected to an Eltex KNH65 source supplying a posi-
tive high voltage (1-60LkV) while simultaneously ground-
ing the spinneret.

Initially, the device was used to produce PP fibers contain-
ing conductive additives, and the finest fiber had a diameter
of 6.64 um. This was produced using high-flow PP HL508FB
(Borealis AG, Vienna, Austria) containing 2% (w/w) sodium
stearate (Alfa Aesar, Karlsruhe, Germany). The distance be-
tween the collector and the nozzle plate was 11 cm, a positive
voltage of 60 kV was applied to the collector, the nozzle was
heated to 210 °C and the polymer flow rate was defined by a
spinning pump speed of 16rpm [96]. Having verified the
function of the device, we then attempted the production of
biobased fibers using Ingeo Biopolymer 6201D, a commercial
spinning-grade PLA (NatureWorks LLC, Minnetonka, Min-
nesota, USA) containing 6% (w/w) sodium stearate. We
maintained the distance between the collector and nozzle
plate at 11 cm but reduced the nozzle temperature to 190 °C
and the spinning pump speed to 2 rpm, yielding fibers ran-
ging from 1.000 to 7.000 um in diameter (Fig. 13).

Outlook
Several methods can be used to produce nanofibers
and sub-microfibers, but melt electrospinning is

among the most promising technologies in terms of
fiber structure and the breadth of downstream appli-
cations due to the absence of solvents in the manu-
facturing process. The major drawback of melt
electrospinning is its low throughput, resulting in the
adoption of solution electrospinning as the principal in-
dustrial process technology. Although some attempts have
been made to scale up the electrospinning method, an in-
dustrial process has yet to be established. At the AMIBM,
we have developed a  promising, scaled-up
melt-electrospinning prototype that bridges the gap be-
tween laboratory-scale and pilot-scale manufacturing.
Thus far, we have produced PLA fibers ~ 1 um in diam-
eter, but this was achieved without comprehensive
optimization of the apparatus, the process parameters or
the polymer substrate and additives. There are many op-
portunities to improve the performance of the device by
adding new features such as a controllable climate cham-
ber around the spinneret to improve jet stretching before
the collector, delaying the solidification of the melt and
thus producing thinner fibers with uniform diameters. In
the future, individually controlled collector tips in a
multi-nozzle structure with the writing ability of melt
electrospinning could lead to the development of truly in-
novative microfiber and nanofiber products.

Abbreviations

AMIBM: Aachen-Maastricht Institute for Biobased Materials; DIN: Deutsches
Institut fur Normung; MFR: Melt flow rate; PCL: Polycaprolactone;

PLA: Polylactic acid; PLGA: Poly(lactic-co-glycolic) acid; PP: Polypropylene;
PU: Polyurethane
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