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Abstract

Background: Black phosphorus (BP) has emerged as a novel class of nanomaterials owing to its unique optical
and electronic properties. BP, a two-dimensional (2D) nanomaterial, is a structure where phosphorenes are stacked
together in layers by van der Waals interactions. However, although BP nanodots have many advantages, their
biosafety and biological effect have not yet been elucidated as compared to the other nanomaterials. Therefore, it
is particularly important to assess the cytotoxicity of BP nanodots for exploring their potentials as novel biomaterials.

Methods: BP nanodots were prepared by exfoliation with a modified ultrasonication-assisted solution method. The
physicochemical properties of BP nanodots were characterized by transmission electron microscopy, dynamic light
scattering, Raman spectroscopy, and X-ray diffractometry. In addition, the cytotoxicity of BP nanodots against C2C12
myoblasts was evaluated. Moreover, their cell imaging potential was investigated.

Results: Herein, we concentrated on evaluating the cytotoxicity of BP nanodots and investigating their cell imaging
potential. It was revealed that the BP nanodots were cytocompatible at a low concentration, although the cell viability
was decreased with increasing BP nanodot concentration. Furthermore, our results demonstrated that the cells took up
the BP nanodots, and the BP nanodots exhibited green fluorescence.

Conclusions: In conclusion, our findings suggest that the BP nanodots have suitable biocompatibility, and are
promising candidates as fluorescence probes for biomedical imaging applications.
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Background

Recently, various types of nanomaterials, such as carbon
nanotube, graphene, quantum dot, and gold nanoparticle,
have been proposed for a number of biomedical applica-
tions due to their distinct properties [1-5]. Among many
nanomaterials, black phosphorus (BP) has emerged as a
novel class of nanomaterials owing to its unique optical
and electronic properties [6, 7]. BP can be readily exfoli-
ated into nanodots because phosphorenes are stacked to-
gether in layers within bulk BP by weak van der Waals
interactions [8—10]. The bandgap of exfoliated BP can be
tailored according to the number of its layers (~ 0.3 eV
for bulk BP and ~ 2 eV for single-layer BP) [7, 11, 12].
In addition, BP possesses superior electronic properties,
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particularly its high carrier mobility (in the order of
10° ¢cm?/V/s) and relatively high lattice thermal con-
ductivity (12.1 W/mK) [13-16]. The uinique puckered
structure of BP can also contribute the unusual mehca-
nical performance, such as a negative Poisson’s ratio,
and unique optical properties, which show applied
strain-dependent and anisotropic optical absorption
spectrum [17-21]. Such unique optical and electronic
properties of nano-sized BP, including an accurate
optical-response property, anisotropic charge transport
and semiconducting property with a layer-dependent
bandgap, enable it to be employed for biomedical im-
aging applications [6, 10, 22]. In addition, the BP can be
tailored by a variety of surface coating ligands, and it
allows BP to be utilized as novel biomaterials. It has
been revealed that the PEGylated BP nanosheets are in-
ternalized into cells by macropinocytosis or caveolae-
dependent endocytosis pathways, and can be used as a
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2D delivery platform for cancer theranostics [10]. In
addition, PEGylated BP has been found to be photo-
stable and suitable for photothermal therapy agent as
well as photoacoustic imaging because it can convert
near-infrared light to heat [19]. Additionally, there have
been intensive efforts to employ BP in many wide-
spread applications, such as lithium-ion rechargeable
batteries, transistors, optoelectronic materials, and en-
ergy harvesting [22-25]. However, not much is known
about the cytotoxicity and biological effects of BP as
compared to the other nanomaterials, although BP nano-
dots have outstanding optical, electrical and mechanical
properties. Therefore, prior to exploring their potential as
novel nanomaterials, it is particularly important to assess
the biosafety and biological effects of BP nanodots.

On the other hand, cell imaging is one of the highest
priority for biomedical applications to fundamentally
understand the biological basis of nanomaterials as well
as to observe cellular behaviors. Hence, much research
has been devoted to developing biofunctional imaging
agents using various nanomaterials, such as quantum
dots, gold nanoparticles and magnetic particles, that can
be simultaneously used as diagnostic imaging and thera-
peutic agents [26—30]. However, the development of
ideal nanomaterial-based imaging and therapeutic agents
is still a challenge. In recent years, BP nanodots have
attracted increasing attention in the field of biomedical
imaging because of their unique optical and fluorescent
characteristics [6, 19, 31, 32]. Meanwhile, the biological
effects of BP nanodots, including cytotoxicity issues on
mammalian cells, still remain to be addressed.

Herein, we focused on the cytotoxicity of BP nanodots
against mammalian cells and further investigated their
cell imaging potential. BP nanodots were prepared by
exfoliation with a modified ultrasonication-assisted solu-
tion method [6]. The physicochemical properties of BP
nanodots were characterized by transmission electron
microscopy (TEM), dynamic light scattering, Raman spec-
troscopy, and X-ray diffraction (XRD). In addition, the
cytotoxicity of BP nanodots against C2C12 skeletal myo-
blasts was determined by cell counting kit-8 (CCK-8) assay.
Furthermore, the fluorescence analysis of C2C12 myoblasts
treated with BP nanodots was conducted in order to ex-
plore their potential as biocompatible fluorescence probes
for applications to cell and biomedical imaging.

Methods

Preparation of BP nanodots

BP nanodots were obtained by exfoliation with a modi-
fied ultrasonication-assisted solution method according
to the procedure previously described [6, 33]. Briefly, BP
(0.4 g, 12.8 mmol) was dispersed in deionized water by
ultrasound sonication for 30 min to form several-layered
BP nanodots. The 10 mL supernatant of BP suspension
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was transferred in fresh deionized water, and ultrasound
sonicated for 10 min. These steps were repeated three
times, and finally, BP nanodots were obtained.

Characterizations of BP nanodots

The morphology of the BP nanodots was examined by
TEM (H-7600, Hitachi, Tokyo, Japan) at an accelerating
voltage of 80 kV. The Raman spectrum of BP nanodots
was obtained by a Raman spectrometer (Micro Raman
PL Mapping System, Dongwoo Optron Co., Kwangju,
Korea) with excitation at 514.5 nm using an Ar-ion laser
with a radiant power of 5 mW. The average hydro-
dynamic size and zeta potential of BP nanodots were an-
alyzed using a Zetasizer (Malvern Instruments, Nano
ZS, Worcestershire, UK). The XRD pattern of BP nano-
dots was obtained using the X-ray diffractometer (Em-
pyrean series 2, PANalytical, Almelo, Netherlands) with
Cu-Ka radiation (A =0.154 nm) at 40 kV and 30 mA.
The measurements were conducted in the 20 range of
10-80° with a scan rate of 2°/min at room temperature.

Cytotoxicity evaluation of BP nanodots in C2C12 skeletal
myoblasts
The C2C12 mouse skeletal myoblasts were purchased
from the American Type Culture Collection (Rockville,
MD, USA) and routinely maintained in Dulbecco’s modi-
fied Eagle’s Medium (DMEM, Welgene, Daegu, Korea) sup-
plemented with 10% fetal bovine serum (Welgene) and a
1% antibiotic-antimycotic solution (containing 10,000 units
penicillin, 25 pg amphotericin B and 10 mg streptomycin
per mL, Sigma-Aldrich Co., Saint Louis, MO, USA) at
37 °C in a humidified atmosphere containing 5% CO,.
To assess the cytotoxicity of BP nanodots in the C2C12
skeletal myoblasts, a CCK-8 assay (Dojindo, Kumamoto,
Japan) was conducted according to the manufacturer’s in-
structions. The number of viable cells was found to be dir-
ectly proportional to the metabolic reaction products
obtained in the CCK-8 assay [34, 35]. Briefly, the C2C12
myoblasts were seeded at a density of 5 x 10* cells/mL on
24-well plates and incubated for 24 h. After then, BP
nanodots were added with increasing concentrations (0 to
250 pg/mL) to the culture media, and the cells were fur-
ther cultured for 24 and 48 h. Subsequently, the cells were
incubated with a CCK-8 solution for an additional 2 h
at 37 °C in the dark. The absorbance values were mea-
sured at 450 nm using a SpectraMax® 340 plate reader
(Molecular Devices, Sunnyvale, CA, USA). The relative
cell viability was determined as the percentage of the
absorbance value in the cells to the absorbance value of
a control group.

Fluorescence imaging of C2C12 skeletal myoblasts
For fluorescence imaging of C2C12 skeletal myoblasts
treated with BP nanodots, the cells were seeded at a
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density of 5x 10* cells/mL on 24-well plates and incu-
bated for 24 h. The culture media were then replaced
with fresh media containing BP nanodots at a predeter-
mined concentration (0.5 pug/mL). To observe the in-
ternalization and fluorescence of BP nanodots in C2C12
skeletal myoblasts, the cells were incubated for 10 min,
30 min, 1 h, 2 h, 6 h, and 24 h. Subsequently, the cells
treated with BP nanodots were thoroughly washed with
Dulbecco’s phosphate-buffered saline (SigmaeAldrich Co.)
and fixed with 3.7% formaldehyde solution (Sigma-Aldrich
Co.) for 10 min. After fixation, the nucleus was stained
using propidium iodide (PI, 1 uM, Sigma-Aldrich Co.) so-
lution for 15 min, and the cells were imaged with an
inverted fluorescence microscope (1X81, Olympus Optical
Co., Osaka, Japan).

Statistical analysis

All variables were tested in three independent cultures
for each experiment, which was repeated twice (n = 6).
The quantitative data are expressed as the mean +
standard deviation (SD). The data were tested for the
homogeneity of the variances using the test of Levene,
prior to statistical analysis. Statistical comparisons
were carried out using a one-way analysis of variance
(ANOVA; SAS Institute Inc., Cary, NC, USA), followed by
a Bonferroni test for multiple comparisons. A value of
p < 0.05 was considered statistically significant.

Results and discussion

Characterizations of BP nanodots

The morphology of BP nanodots was observed by TEM
and presented in Fig. 1la. TEM image showed the uni-
form spherical morphology of BP nanodots with the
diameter of about several nanometers. In addition, it was
shown that fine BP nanodots were clustered together into
random agglomerates varying from a few nanodots to a
few dozen nanodots because the freshly exfoliated BP
nanodots were suspended in aqueous solution. Consider-
ing the cell culture condition, although TEM is a highly
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accurate technique for the characterization of nano-sized
particles, their hydrodynamic size and surface charge
should be considered because they would be suspended
in culture media [36]. The average hydrodynamic size
and zeta potential of BP nanodots were determined by
dynamic light scattering and found to be 164 + 24 nm
and - 12.48 + 0.66 mV, respectively. Therefore, it was
indicated that the BP nanodots are successfully pre-
pared from bulk BP and stably dispersed in aqueous so-
lution, even though the hydrodynamic size of BP
nanodots was slightly bigger than their individual size
observed from TEM image.

To further confirm the successful preparation of BP
nanodots, Raman spectroscopy was conducted because
the BP typically exhibits specific bands, such as Aé, Ag

and B,; modes of phosphorene [24, 37, 38]. Figure 1b
shows the Raman spectrum of BP nanodots. The notice-
able bands were observed at 362, 440 and 469 cm™ ',
which were attributed to the Aé, Aé and B,, modes of

phosphorene as reported in several previous studies
[24, 37, 38]. In addition, the sharp Raman features in
the spectrum implied that the BP nanodots were
unique orthorhombic crystalline phosphorus structure.
The orthorhombic crystalline structure of BP nanodots
was also confirmed by XRD pattern (Fig. 1c). The XRD
pattern of BP nanodots was found to be consistent with
that of standard pattern of orthorhombic BP (JCPDS
No. 76-1957). The characteristic diffraction peaks were
observed at 16.9°, 34.2°, 52.3°, and 72.0°, corresponding
to the dozo =5.24 A, doso =2.62 A, doso =1.75 A, and
dogo = 1.31 A, respectively. These results demonstrated
that the BP nanodots employed in the present study
were successfully prepared [24]. On the other hand, the
nanometer-scale diameter of BP nanodots can greatly
facilitate the interactions between BP nanodots and
cells. However, the BP nanodots having nanometer-scale
diameter might exhibit undesirable toxic effects on cells
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Fig. 1 Characterizations of BP nanodots. a TEM image, b Raman spectrum, ¢ XRD pattern of BP nanodots
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and tissues that have not been found in bulk ones. There-
fore, we evaluated the cytotoxic effects on C2C12 murine
skeletal myoblasts, prior to exploring their cell imaging
potentials.

Cytotoxicity of BP nanodots against C2C12 skeletal
myoblasts

The cell viability of C2C12 skeletal myoblasts was deter-
mined according to the concentrations of BP nanodots
(0 to 250 pg/mL) by using CCK-8 assay, based on the
metabolic activity of mitochondria, in order to examine
their influence on mammalian cells. As presented in
Fig. 2a, the myoblast viability was decreased with in-
creasing BP nanodot concentrations. The cell viability
was significantly (p <0.05) decreased at concentrations
higher than 10 ug/mL after 24 h of incubation with BP
nanodots, and it was approximately 30% of the control
at the highest concentration (250 pg/mL). Meanwhile,
over 84% of C2C12 myoblasts were viable at a concen-
tration of 4 pg/mL. The cytotoxicity of BP nanodots
after 48 h also dose-dependently increased. In addition,
after longer time periods of incubation with BP nanodots
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Fig. 2 Cytotoxicity of BP nanodots against C2C12 skeletal myoblasts.
a C2C12 skeletal myoblast viability after the 24 (m) and 48 h (A) of
incubation with various concentrations of BP nanodots (0 to 250 pg/mL).
b Representative optical microscopic images of C2C12 skeletal myoblasts
cultured with BP nanodots (0, 0.5, 4, and 250 ug/mL) for 24 h. The
viability of C2C12 myoblasts was determined using a CCK-8 assay,
and all photographs shown in this figure are representative of six
independent experiments with similar results
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(48 h), the decrease in cell viability was more significant
at concentrations higher than 10 pg/mL. However, the
cell viability was ~ 83% at 4 pg/mL of BP nanodots, indi-
cating that the BP nanodots showed little cytotoxicity at
low concentrations (<4 pg/mL). These results are in
contradiction with several previous studies, which showed
that there was no observable cytotoxicity [6, 39, 40]. In
particular, BP nanodots were reported to show little cyto-
toxicity even at 1000 pg/mL to HeLa cell (human cervical
carcinoma line), COS-7 cell (fibroblast-like monkey kid-
ney cell line) and CHO-K1 cell (chinese hamster ovary
cell) [6]. This can be attributed to the fact that nanoma-
terials and their derivatives exhibit cell type specific
toxicity [41-44]. In the present study, BP nanodots
showed significant cytotoxicity against C2C12 mouse
skeletal myoblasts at high concentrations (< 10 pg/mL).

The morphological observations further support the
cytotoxicity evaluation results. The morphologies of
C2C12 skeletal myoblasts treated with each concentra-
tion of BP nanodots were observed by optical micro-
scope, and the representative optical images (0, 0.5, 4,
and 250 pg/mL of BP nanodots) were shown in Fig. 2b.
The cells were well grown at concentrations lower than
4 pg/mL, and there was no morphological signs of cyto-
toxicity. However, at a concentration of 250 pg/mL BP
nanodots, cells showed shrunken morphology, and the
number of cells was significantly decreased. These re-
sults were in good accordance with the cytotoxicity pro-
file (Fig. 2a). According to the previous literature, the
cytotoxicity of nanomaterials, such as carbon nanotube,
graphene and gold nanoparticles, is closely related to
the intracellular reactive oxygen species (ROS) produc-
tion and membrane disruption [34, 36, 45]. The cyto-
toxicity of BP nanodots can also have relevance to both
intracellular ROS production and cell membrane dis-
ruption [36, 40]. Meanwhile, it has been widely docu-
mented that the effects of nanomaterials are highly
dependent on their concentration, size, shape, and sur-
face charge [34-36, 46—50]. Hence, it is particularly de-
sirable to use nano-sized BP having proper size, shape
and surface charge. A series of previous studies indicate
that the negatively charged particles show lower cyto-
toxicity than positively charged particles [47-50], and
the cellular uptake of rod-shaped particles is lower than
their spherical counterparts [51-53]. In addition, recent
studies show that the larger BP particles (~ 884 nm)
have more cytotoxic effects on cells compared to the
smaller ones (~ 209 nm) [6, 10, 40, 54]. However, there
have been also many conflicting results in the literature
that may be due to variations in many other factors,
such as size, particle dimension and surface functional
moiety, and the effects of those factors on the cytotox-
icity of BP particles may be only valid when comparing
several different types of BP. The BP nanodots, used in
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the present study, exhibited cytotoxicity against C2C12
myoblasts in a dose-dependent manner, but not at low
concentrations (<4 pg/mL), as consistent with previous
studies that have documented that BP has good bio-
compatibility and can be applicable to biomedical appli-
cations, such as photoacoustic imaging and drug
delivery system [6, 10, 19, 36, 54]. Therefore, it is sug-
gested that BP nanodots at low concentrations have a
suitable biocompatibility for their use in biomedical
applications.

In vitro fluorescence imaging of BP nanodots

To explore the potential of BP nanodots as a novel cell
imaging agent, in vitro fluorescence imaging was carried
out. Considering the cytotoxicity evaluation results (Fig. 2),
we cultured C2C12 myoblasts with the 0.5 pg/mL of BP
nanodots and analyzed by fluorescence microscopy.
Figure 3 shows the fluorescence images of C2C12 myo-
blasts cultured with BP nanodots for 10 min, 30 min,
1h,2h,and 6 h.

The fluorescence images showed that the BP nano-
dots were internalized into cells as incubation time in-
creased from O to 6 h. It has been reported that the
nano-sized BP can be internalized into cells via either
macropinocytosis or caveolae-dependent endocytosis,
and then transported through endosome and lysosome,
followed by lysosomal degradation [10]. Moreover, the
negatively charged surface of BP nanodots (- 12.48 +
0.66 mV) can also facilitate their internalization into cells
via caveolae-dependent endocytosis [49, 50]. Therefore,
BP nanodots were also able to enter cells via macropino-
cytosis or caveolae-dependent endocytosis pathways. After
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30 min of incubation with BP nanodots, the BP nanodots
were accumulated in the cytoplasm, and the green fluores-
cence of BP nanodots was detected. Then, after more time
elapsed, more BP nanodots could be internalized into
cells, and accumulated in the cytoplasm, resulting in a
clear green fluorescence from C2C12 myoblasts. After 6 h
of incubation, BP nanodots could be effectively internal-
ized into C2C12 myoblasts, and a strong green fluores-
cence was exhibited from BP nanodots concentrated in
myoblasts. To clearly verify the fluorescence imaging po-
tential of BP nanodots, the fluorescence images were
taken after allowing sufficient time (24 h) for the BP nano-
dots to be internalized into cells (Fig. 4).

As shown in Fig. 4, the cells were favorably grown
with 0.5 pg/mL BP nanodots showing typical spindle-like
morphology. Notably, during the culture period, no ob-
servable cytotoxicity was detected. Moreover, the
strong green fluorescence was exhibited from the BP
nanodots in the cytoplasm of C2C12 myoblasts. It has
been acknowledged that the graphene-based nanoma-
terials or transition-metal dichalcogenides, such as WS,
and MoS,, are able to serve as a platform for biomedical
imaging [55—-60]. However, such graphene- or transition-
metal dichalcogenide-based nanomaterials are not bio-
chemically degradable, which in turn, it has been largely
restricted to their application for biomedical applications
due to inadequate clearance from the organs and tissues
[6, 61-64]. On the other hand, the BP nanodots can be
biochemically degraded by the internalization into cells
via macropinocytosis or caveolae-dependent endocytosis
pathways, followed by lysosomal degradation, and fa-
vorably cleared from organs and tissues during blood

0 min
"

Fig. 3 Time-lapse fluorescence imaging of BP nanodots. Time-lapse fluorescence images of C2C12 myoblasts cultured with 0.5 ug/mL of BP
nanodots for 10 min, 30 min, 1 h, 2 h, and 6 h. The scale bars are 200 um
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Fig. 4 In vitro fluorescence imaging of BP nanodots. Fluorescence images of C2C12 skeletal myoblasts treated with 0.5 pg/mL of BP nanodots for 24 h.
Cell nuclei were counterstained with PI (red). All photographs shown in this figure are representative of six independent experiments with similar results

circulation [6, 10, 65]. BP nanodots have been recently
known to not only have unique optical and electronic
properties but to also possess specific fluorescence
properties.

The BP nanomaterials can exhibit blue- and green-emis-
sion (A\em =461 and 519 nm) under ultraviolet (UV) and
visible light excitation (A, = 358 and 495 nm), respectively
[6]. However, the UV light has been extensively recog-
nized to induce significantly optical damages by activat-
ing apoptosis signaling pathway as well as the
production of ROS [66-69]. Hence, we observed myo-
blasts treated with BP nanodots under visible excita-
tion (Aex =495 nm and A, =519 nm). As revealed in
Fig. 4, the BP nanodots were successfully internalized into
C2C12 myoblasts, concentrated in their cytoplasm, and
exhibited a specific green fluorescence without undesir-
able cytotoxic effects. These results implied that the BP
nanodots can be used as novel intrinsic fluorescence
probes for biomedical applications. In addition, recent
studies have revealed that the nano-sized BP have
promising potential as drug delivery carrier, photother-
mal/photodynamic therapy agent and photodetector
[6, 8, 10, 31, 54, 65]. Moreover, BP nanodots can be
functionalized with various surface groups tailored for
target applications, such as drug delivery, photother-
mal/photodynamic therapy and photodetection, thus
allowing the BP nanodots to be a promising candidate
as novel biofunctional materials for biomedical appli-
cations. However, the more detailed biological effects
of BP nanodots are still largely unknown, and further
comprehensive studies should be performed before their
clinical applications. Nonetheless, our preliminary studies
on the potential of BP nanodots suggest that the BP nano-
dots can be employed as promising fluorescence probes
for applications to cell and biomedical imaging.

Conclusions

This study was designed to evaluate the cytotoxicity of BP
nanodots and to explore their potential for cell imaging.
We successfully prepared BP nanodots by exfoliation
using a modified ultrasonication-assisted solution method.
The BP nanodots were found to have a nanoscale-size, in-
dicating that the BP nanodots consisted of several layers
of BP. In addition, from the cytotoxicity evaluation using
C2C12 skeletal myoblasts, it was revealed that the BP
nanodots showed a dose-dependent cytotoxicity, and were
cytocompatible at low concentrations (< 4 pg/mL). More-
over, our results demonstrated that the BP nanodots could
be easily internalized into C2C12 skeletal myoblasts, and
exhibited green fluorescence under visible light excitation
without undesirable cytotoxic effects. Our findings suggest
that the BP nanodots have a suitable biocompatibility, and
are promising candidates as fluorescence probes for bio-
medical imaging applications, although further compre-
hensive studies with BP nanodots are needed to employ
the BP nanodots for in vivo and clinical applications.
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