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Abstract

Background: Mechanical properties and cyto-compatibility of a composite scaffold which possessed negative (−)
Poisson’s ratio (NPR) was investigated for effective load transfer from auxetic scaffold to cell.

Methods: Organic/inorganic composite scaffolds were prepared by mixing hydroxyapatite (HA) to poly(lactide-co-
glycolide) (PLGA). To induce NPR in composite scaffold, 3-directional volumetric compression was applied during
the scaffold fabrication at adequate temperature(60°C). The pore size of scaffold ranged between 355–400 μm.

Results: Poisson’s ratios of NPR scaffolds and control scaffolds were −0.07 and 0.16 at 10 % strain. For stable physical
stimulating to loaded cells, ceramic/polymer composite scaffold was prepared by incorporating HA in PLGA to increase
mechanical strength. Compressive strength of the HA/PLGA composite scaffold (15 wt. % HA to PLGA) was
about 21.7 % higher than that of PLGA-only scaffold. The recovery rates of the NPR composite scaffold after
applying compression in the dry and wet states were 90 % and 60 %, respectively. Also the composite
scaffold was shown to have better hydrophilicity (61.9°) compared to the PLGA-only scaffolds (65.3°). Cell
proliferation of osteoblast-like cell line (MG-63) in the composite scaffold was 20 % higher than in PLGA-only
scaffold at static compressive stimulation. For dynamic compressive stimulation (15 min cyclic interval), cell
proliferation in the composite scaffold was 2 times higher than that of in PLGA-only scaffold. In conclusion,
NPR composite (HA/PLGA) scaffold was effective in isotropic compressive load delivery for osteogenic cell
proliferation.

Conclusion: This composite scaffold with stimulation can be used as tissue engineered scaffold and dynamic
cell culture system for bone tissue regeneration.
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Background
In recent years, biodegradable polymeric scaffold has
been widely used for three-dimensional (3-D) cell cul-
ture platform to regenerate tissue-based artificial organs
[1]. Scaffold fabrication requires consideration of many
mechanical factors in order to mimic the native tissue,
such as pore size, porosity, and physical property. For
example, the most effective pore size of a polymeric

scaffold for bone tissue regeneration is known to be
380–405 μm [2–4].
Not only are these mechanical properties of scaffold

important for tissue regeneration, but also the physical
stimulation applied to cells through the scaffold during
culture plays an important role in cell proliferation and
have become an important factor in tissue engineering.
The tissues are subjected to mechanical stimulation dur-
ing daily activities in biomimetic environments. Bone
tissue modifies its structure by sensing mechanical
stresses generated by dynamic loading and unloading
cycles in vivo, which, in turn, generates electric current
that triggers remodeling activities and bone cell
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proliferation [5–9]. Fukuda and Yasuda discovered the
pieozoelectric theory which showed that bone tissue is
transformed by the dynamic load and cycle in vivo. In
summary, through mechanical stimulation, the density
of bone tissue was improved. Based on this, there are vari-
ous methods of mechanical stimulation to affect cell be-
haviors in vitro such as compressive loading, longitudinal
stretch, substrate bending, plane substrate distention, and
fluid shear systems [8–10].
The Poisson’s ratio is the negative strain ratio of

longitudinal strain divided by the transverse strain. If a
material has a negative Poisson’s ratio, it can conduct
high compressibility in multi axial directions and is
referred to as auxetic material [11]. Lakes proposed that
application of 3-axis compression and heat treatment
above the softening temperature to a negative Poisson’s
ratio for auxetic material in order to produce foam
[11]. Lakes and Choi formed a re-entrant structure
using a 3.5:1 compression ratio to achieve a foam scaffold
with a negative Poisson’s ratio using polyurethane [11–13].
PLGA scaffolds are widely used in bone tissue engineering,
but few studies have investigated auxetic biodegradable
scaffold [14]. A scaffold that has a negative Poisson’s ratio
was shown to have isotropic compression around pores
when compression was applied to a material in one direc-
tion, and it confirmed the proliferation of the bone tissue
(MG-63 cell) [14].
In This study, we checked NPR PLGA scaffold and

NPR composite scaffold’s various properties and evalu-
ated the relative impact upon cell (MG-63) proliferation.
Specifically, the cells in a HA/PLGA scaffold with NPR
will receive compressive stimulus from all directions,
despite a stimulus only being applied in one direction.
Hydroxyapatite (HA) is known inorganic material that is
similar to natural bone tissue in terms of its inorganic
components, chemical composition and crystallographic
characteristics. These advantages of HA in the PLGA
scaffold will enhance biocompatibility and mechanical
properties of a scaffolds for osteogenic cell growth. Con-
sequently, 3-D scaffolds with a negative Poisson’s ratio
would be expected to have a positive effect on bone cell
proliferation. Therefore, this study was conducted to
fabricate auxetic HA/PLGA and investigate the effects of
bone cell proliferation following various dynamic com-
pressive stimuli

Methods
Materials
Poly(D,L-lactic-co-glycolic acid) (PLGA) was purchased
from Lakeshore Biometerials (Essen, Germany) and
Hydroxyapatite (HA) was form Sigma-Aldrich (St. Louis,
MO) were used for scaffold fabrication. The molar ratio
of lactide to glycolide was 50/50 and their molecular
mass averages of the weight (Mw) and number (Mn) are

69 kDa and 42 kDa, respectively. MG-63 osteoblast-
like cell for this study was obtained from KCLB
(Seoul, Korea) Dulbecco’s Modified Eagle Medium
(DMEM) was obtained from Welgene (Daegu, Korea),
fetal bovine serum (FBS) was purchased from Gibco
(Thermo Fisher Scientific, Waltham, USA)and penicil-
lin/streptomycin (P/S) was purchased from Sigma-
Aldrich (St. Louis, MO)

Fabrication of scaffolds
HA/PLGA composite scaffold was fabricated using a
solvent casting/salt leaching method. Briefly, PLGA was
dissolved in chloroform at a concentration of 10 w/v %
and then HA was added at different concentration of 0,
5, 10, and 15 wt. % to PLGA. The HA/PLGA composite
solution was mixed well with two different sodium
chloride particles (355–400 μm and 500–600 μm) to
generate pore structures. The mixture was then poured
into a Teflon mold (1.5 × 1.5 × 1.5 cm3 for control group
and 2 × 2 × 2 cm3 for experimental group) and dried at
room temperature for 24 h. The dried samples were
immersed in distilled water for 2 days to remove salt
particles. Finally, specimens were freeze-dried for 24 h
to remove distilled water [15–17].
To induce NPR, the 3-axis permanent volumetric

compression with heat treatment technique was pro-
posed [11]. Briefly, porous scaffolds were annealed at
60 °C in heating oven under the three orthogonal direc-
tional compression for 10 min. The compression ratio
was 2.37:1 (2 × 2 × 2 cm3 to 1.5 × 1.5 × 1.5 cm3). After
treatment, the specimens were allowed to cool down at
room temperature for 24 h.

Measurement of Poisson’s ratio
To determine the Poisson’s ratio, scanning electron
microscope (SEM) images of scaffolds were analyzed
using Image J V2.0.0. The Material Testing System
(LRX-PLUS, Lloyd Instruments, West Sussex, UK)
was utilized to apply a load to the specimens. A
digital microscope (BX51, Olympus Corporation,
Tokyo, Japan) was used to capture images and meas-
ure the displacement of the specimen [Fig. 1]. All
specimens were compressed from 0 % to 25 % strain
and the image was captured with 5 % strain intervals.
The relative positions of pointed marks were used to
estimate strain and Poisson’s ratio of the specimens.
Points A–D was used to estimate the Poisson’s ratio
by tracking the center of the points, as shown in
Fig. 1. The changes in the x-axis and y-axis distance
were calculated by Equations (1) and (2), and these
values were input into Equation (3) to determine the
Poisson’s ratio [18, 19] [Fig. 2].
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εx ¼ A−Bj j− A0−B0j j
A0−B0j j ð1Þ

εy ¼ C−Dj j− C0−D0j j
C0−D0j j ð2Þ

ν ¼ −
εx
εy

ð3Þ

where: εx = strain of x-axis
εy = strain of y-axis
ν =material Poisson’s ratio
A0 ~ D0 = initial point (load = 0)
A ~ D =moved point under load

Measurement of contact angle
The polymer film was fabricated by solvent evaporation
methods to measure surface properties of PLGA and HA/
PLGA composite. Contact angle of HA/PLGA composite
was analyzed according to the HA content in the PLGA
using a contact angle analyzer (Phoenix 250, Surface &
Electro-Optics Corporation, Korea) and an analysis
program (Image Pro 300, Surface & Electro-Optics
Corporation, Korea).

Mechanical properties on wet/dry state of the specimens
Compressive strength of the scaffold was estimated in
wet state for simulating cell culture environment using
a Material Testing System (MTS) at 10 % compressive
strain. The compressive strength of the composite scaf-
fold was examined at 10 and 15 % strain. The cross
head speed of MTS was 1 mm/min. Both HA/PLGA
composite and PLGA-only scaffolds were pre-wetted
with ethanol for 2 h and then submerged in PBS solu-
tion at 37 °C for 2 h. After pre-wetting the specimens,
they were soaked in DMEM at 37 °C for 2 h in shaking
incubator at 200 rpm [15]. Measurement of the stress–
strain recovery rate of the scaffold was conducted after
applying 10 and 15 % compressive strain for 5 min to
the scaffold, then, recovered position was measured
after 5 min from releasing load. The recovery rate was
measured at a ratio to return to its original position
after applying compression to the specimens. The
recovery rate was obtained according to Equation (4).

Recovery rate ¼ A recovery length mmð Þ
Applying a compression length mmð Þ

ð4Þ

Cell culture and proliferation with dynamic compressive
stimulation
Human osteoblastic-like cells (MG-63, KCLB, Seoul,
Korea) were cultured in cell culture flasks with DMEM
supplemented with 10 % FBS and 1 % P/S in a humidified

Fig. 2 An apparatus for cell culture with compressive stimulation.
The apparatus was manufactured to apply 10 % compressive strain
to the scaffold in 12-well plate

Fig. 1 Marks for estimating Poisson’s ratio of specimens. Initial
points. a–d (before compressive pressure)
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incubator with 5 % CO2 at 37 °C. The media was ex-
changed every 3 days. For sterilization, the specimens
were incubated in 70 % ethanol for 1 h, followed by wash-
ing three times with PBS solution. For all cell tests, 4 to 6
passaged MG-63 cells were used. For cell proliferation
test, cells were seeded on the scaffolds at an initial cell
density of 2.0 × 105 (cells/specimen) and cultivated in a
humidified incubator containing 5 % CO2 at 37 °C.
Dynamic compressive stimulation was carried out for 4 h
per a day and consisted of 0-, 5-, and 15-min cycle of 15 %
compressive strain (approximately 19.6 N).
The cell proliferation rate was measured using a Cell

Counting Kit (CCK-8, Dojindo Molecular Technologies,
Inc., Maryland, USA). The cell proliferation rates were ob-
served on days 1, 3, and 5. CCK-8 was mixed with scaffold’s
medium (DMEM:CCK solution = 10:1) at each days of 1, 3,
and, 5, and then placed in an incubator at 37°C for 4 h.
Finally, the 1, 3, and 5 days’ absorbance of the CCK-8 solu-
tion was measured using a Fluorescence Multi-Detection
Reader (Synergy HT, BIO-TEK Instruments, Inc., Vermont,
USA) at 450 nm.

Statistical analysis
Data were expressed as the means ± standard error for
all comparisons. A t-test was used to evaluate differences
between groups (p <0.05).

Results and Discussion
Mechanical properties of prepared scaffolds
NPR was successfully achieved in the HA/PLGA com-
posite scaffold. NPR resulted from transformation of
microstructural shapes of the scaffolds. The morphology
of pores was transformed from convex to concave shape,
which enables the ratios property in the scaffolds as
shown in Fig. 3. Both PLGA and HA/PLGA composite
scaffolds contained concave and dented pores as indi-
cated by the white arrow marks in Fig. 3(a) and (b).

These recessed shapes could be deemed as having typical
pore structures for a negative Poisson’s ratio.
Poisson’s ratio of conventional (control) scaffold

specimens were 0.15 ~ 0.24 range when compressed at
5 ~ 25 % strain. However, the NPR (experimental) scaf-
fold specimens were shown negative value as −0.01 ~
−0.07 range at 5 ~ 25 % compressive strain. The lowest
Poisson’s ratio was −0.07 at 10 % strain level with
compression at NPR (experimental) scaffold. (Fig. 4)
In this study, we investigate Poisson’s rstio of the scaf-

folds in dry state. We thought that it is nessessary to
investigate the behavior of the scaffolds in wet state. In
next stduty, we will investigate Poisson’s ratio of the
scaffolds in wet state.
The mechanical properties of the scaffolds were shown

in Fig. 5(a). The compressive strength of the scaffolds

Fig. 3 Cross-sectional SEM images of (a) PLGA, and (b) 10 wt. % HA/PLGA composite scaffolds after tri-axial compression. The white arrow marks
indicate different pore structures (scale bar = 1 mm)

Fig. 4 Poisson’s ratio of PLGA scaffolds under 5 ~ 25 % strain with
compressive loading. (n = 5)
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was increased by incorporation of HA. Mechanical
strength of 15 wt. % HA/PLGA composite scaffold was
21.7 % higher than that of PLGA scaffold. Mechanical
properties of the scaffolds in dry/wet state at 5 % and
10 % strain (compression) were shown in Fig. 5 (b).
The mechanical strength of the PLGA scaffold tended

to decrease dramatically in wet state, with an overall
reduction of about 70 % compared to those in dry state.
However, that of the composite scaffolds increased in
response to the addition of HA in dry and wet state.
Therefore, HA incorporated composite PLGA scaffold
was increased in compressive strength and then deliv-
ered physical stimulation to the cells in wet condition.
In wet state, the scaffolds could not recover to original

shape after compression due to loss of elasticity. The
mechanical property of the scaffold is important to
transfer physical stimulation to cells during cultivation
in culture media. So, the recovery rate of scaffold was
investigated to determine the endurance of scaffold
under dynamic loading stimulation during cell cultiva-
tion. The recovery rates of scaffolds in wet and dry state

at 10 and 15 % strain level are shown in Fig. 6(a) and (b),
respectively. The recovery rate of the PLGA scaffold was
increased with increasing HA contents under dry and
wet state. In 10 % strain compression, the recovery rate
of 10 wt. % HA/PLGA composite scaffold was increased
up to 29 % of compared with PLGA-only of 20 %, how-
ever, the recovery rate of 15 wt. % HA/PLGA composite
scaffold was decreased about 23 % compared with 10
wt. % HA/PLGA composite scaffold [Fig. 6 (a)]. In 15 %
strain compression, the recovery rate of 10 wt. % HA/
PLGA composite scaffold was 23.4 % higher in dry-
state and 22.4 % higher in wet-state than PLGA-only
scaffold [Fig. 6 (b)]. It was shown 10 wt. % HA/PLGA
composite scaffold’s recovery rate is highest compared
to PLGA-only scaffold. Therefore, 10 wt. % HA/PLGA
composite scaffold would be better to deliver dynamic
mechanical stimuli effectively to the cells than PLGA-
only scaffold in wet condition.
Contact angle of the HA/PLGA composite scaffold

was measured to determine hydrophilicity of the speci-
mens. Hydrophilicity of the composite specimen films

Fig. 5 Mechanical property of each scaffold specimen at 5 and 10 % strain. a various HA contents and (b) in wet and dry state (n = 4, *p < 0.05)

Fig. 6 Effect of wet/dry state with HA content on recovery rate (a) 10 % strain on wet state and (b) 15 % strain on dry and wet state
(n = 4, *p < 0.05)
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was increased with increasing HA content [Fig. 7].
However, when the amount of HA content exceeded
10 %, contact angle of the composite films gradually in-
creased and showed relatively hydrophobic property.
These findings indicated that an optimized content
(10 %) of HA is necessary to maintain hydrophilicity of
the PLGA scaffold.

Cell culture and proliferation with dynamic compressive
stimulation
In cell proliferation tests, proliferation of the MG-63 cells
in the HA/PLGA composite scaffold without dynamic
compression stimulation was 15–20 % higher than that of
PLGA-only scaffold at 5 days of cultivation [Fig. 8 (a)].
These findings indicated that HA incorporation may
facilitate bone cell growth. Considering that human bone
is composed of 69 % HA, the addition of the calcium
phosphate-based ceramic HA likely provided the most
similar properties to natural bone.
In cell culture with 5 min-cycle intervals of compres-

sive stimulation, MG-63 cell proliferation was increased
about 30.6, 28.4 and 42.1 % higher in 10 wt. % HA/
PLGA composite scaffold compared with PLGA-only
scaffold for 1, 3 and 5 days culture, respectively [Fig. 8
(b)]. The result of cell proliferation at 5 min-cycle stim-
uli showed a statistically significant difference. On the
other hand, in case of cells proliferation with 15 min-
cycle stimulation, 10 wt. % HA/PLGA composite scaf-
folds showed higher cell proliferation than PLGA-only
scaffolds, but did not show statistically significant differ-
ence at 3 and 5 days culture [Fig. 8 (c), Fig. 9].
Our comprehensive analysis of cell proliferation test

showed that just addition of HA, a major component of
bone, increased the cell proliferation of PLGA scaffold. Fur-
thermore, applying suitable stimulation-cycle (this study
was 5 min-cycle) further increased bone-cell proliferation

Fig. 7 Contact angles according to Hydroxyapatite contents
(n = 4, *p < 0.05)

Fig. 8 MG-63 cell proliferation rate on PLGA and HA/PLGA scaffolds (a) without dynamic compressive stimulation, (b) with dynamic compression
stimulation (5 min cycles), (c) with dynamic compression stimulation (15 min cycles) at 1, 3 and 5 days of culture (n = 4, *p < 0.05)
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in the scaffold. Therefore, more frequent stimulating during
a short-cycle at NPR composite scaffold provides effective
isotropic compression for bone cell proliferation.

Conclusions
We successfully fabricated the HA/PLGA composite
scaffold having a negative Poisson’s ratio. We found a
suitable HA content that was improved the hydrophil-
icity and mechanical property of the PLGA scaffold. The
addition of HA increased the compression strength of
the PLGA scaffold in the wet-state and positively con-
tributed to stimuli-cell culture environment. The HA/
PLGA composite scaffold can maintain their shape dur-
ing the continuous compressive stimulation.
In case of without compression stimulation, the

addition of 10 wt. % HA led to 20 % increases in
osteoblast-like cell proliferation relative to PLGA at
5 days of culture. We also confirmed that 10 wt. % HA/
PLGA composite scaffold showed 2 times higher cell
proliferation than PLGA scaffold following dynamic
stimulation. Hence, proper dynamic compression stimu-
lation (5 min cycles) would facilitate bone regeneration
by supplying an effective isotropic compression in NPR
scaffold.
Overall, these findings indicate that the NPR composite

scaffolds used in this study would help bone regeneration

by supplying a better osteo-compatibility and an effective
isotropic compression to stimulate the proliferation of
bone cells.
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