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Abstract

Background: Various micropatterned surfaces capable of guiding the selective adhesion of biomolecules such as
proteins and cells are of great interests in biosensor, diagnostics, drug screening, and tissue engineering. In this
study, we described a simple photo-patterning method to prepare micro-patterned films for stem cell patterning
using anthracene containing polymers (PMAn). This micro patterned polymer film was prepared by the facile
photo-reaction of anthracene units in polymer backbone structure.

Results: The UV irradiation of PMAn through a photomask resulted in the quenching of fluorescent intensity as
well as the changes in surface wettability from hydrophobic to hydrophilic surface. As a result, UV exposed regions
of PMAn film show lower fluorescent intensity as well as higher proliferation rate of mesenchymal stem cells (MSCs)
than unexposed region of PMAn film. Furthermore, the selective MSC attachment was clearly observed in the UV
exposed regions of PMAn film.

Conclusion: We developed a simple cell patterning method with a fluorescent, biocompatible, and patternable
polymer film containing anthracene units. This method provides a facile stem cell patterning method and could be
extended to various patterning of biomaterials without labor-intensive preparation and no pre-treatment for
complex interactions of cell-microenvironment.

Keywords: Anthracene, Fluorescent polymer, Photolithography, Polymer pattern film, Photoreaction, Human
mesenchymal stem, Cell patterning

Background
Micropatterned surfaces that can selectively interact with
biomaterials such as proteins and cells are of great interest
in genomics, diagnostics, drug screening, and tissue engin-
eering, as these “micro-scale patterned surfaces” enable us
to define the adhesion of single cells or cell groups [1–3].
Beyond the control of cell adhesion, these surfaces are par-
ticularly valuable for designing and developing cell culture
systems which reflect better the complexity of cell-
microenvironment interactions in order to regulate cell
phenotype and cell fate [4–6].
A number of micropatterning approaches have been

extensively exploited including microcontact printing,
photoresist lithography, microfluidics, and self-assembled

monolayers (SAMs) [7–11]. Also, a number of laboratories,
including our own, have been performing surface engineer-
ing with poly (ethylene glycol) (PEG) photolithography to
control cell-surface interactions, originating from anti-
fouling effects of PEG hydrogel [12–14]. However, SAM
method with alkylthiols requires labor intensive preparation
and also is only applicable to gold and glass substrate. Also,
the major limitations of PEG hydrogel micropatterned sur-
faces is the instability of PEG adhesion on substrates. The
stability of PEG hydrogel micropatterns is influenced by
not only the molecular weight and concentration of PEG
but also the treatment of silane as a coupling layer. In gen-
eral, thiol-silane anchored PEG hydrogel are durable for up
to 3 days but this hydrogel started being detached after
4 days, in spite of the anchoring of hydrogel microstruc-
tures with silane coupling agents [15]. Thus, simple but
solid methods for cell micropatterns still remains a signifi-
cant challenge.
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The patterning of functional polymers with conductive
and fluorescent properties has recently garnered consider-
able attention for sensor, bioengineering, display and elec-
trical circuits because of their specific opto-electronic
properties [16–19]. Recently, we reported direct photopat-
terning approaches for functional polymers to avoid de-
composition of the functional group in polymer structure
during the patterning step [20–22]. Leveraging simple and
direct photo-patterning process, we have developed a
highly fluorescent and biocompatible p-phenylene viny-
lene (PPV) polymer pattern film that allows stem cell
micropatterns [23]. This enables us to easily detect the lo-
cation of cells or other biomaterials without the labeling
cells because the pattern is fluorescent.
For the application of direct photo-patterning, it is im-

portant to prepare a patternable fluorescent polymer.
Anthracnee moleuclue has been frequently utilized to
fabriciate photo-responsive biocompatible drug delivery
systems due to the its ability of photo-truggered reaction
upon UV exposure [24, 25]. In this study, we report a
photo patternable anthracene containing fluorescent
polymer (PMAn) for the selective patterning of mesen-
chymal stem cells (MSCs). We utilized micro polymer
(PMAn) patterns formed by direct photo-reaction of an-
thracene units for guiding stem cell adhesion.

Methods
Materials
Methylene bridged anthracene polymer (PMAn) was syn-
thesized via Friedel-Crafts alkylation reaction [26, 27].
Weight average molecular weight (Mw) of the resultant
polymer by gel permeation chromatography (GPC) was
6700 with Mw/Mn of 1.7. α-Minimum Essential Medium
(α-MEM), Fetal Bovine Serum (FBS), antibiotics (Penicillin/
Streptomycin), Phosphate-Buffered Saline (PBS, pH 7.4),
Trypsin/EDTA (0.05 %), and Tryphan blue (0.4 %) were
purchased from Gibco (Invitrogen, USA). Albumin (5 %)
was purchased from Green cross corporation (Korea). Bone
Marrow (BM)-derived Mesenchymal Stem Cells (MSCs),
on patient compliance, were used for this study. A frozen
stock of MSCs was provided by Cell Therapy Center, Sever-
ance hospital (from University of Yonsei, Seoul, Korea) at
passage 3. Other chemicals and solvents were purchased
from Aldrich.

Instruments
1H spectrum was determined on a Bruker ARX-300 spec-
trometer. The average molecular weight of the polymer was
characterized by a gel permeation chromatography (GPC)
(model: Waters R-401 ALC/GPC) with THF as an eluent
and polystyrene standard for calibration. Fluorescence spec-
tra were obtained with a luminescence spectrometer (Perki-
nElmer, Model LS55) under excitation at 370 nm. The
polymer films were illuminated with a UV lamp (Rolence

Enterprise, Inc., Taiwan, power: 13.05 mW/cm2), model
POWERARC UV 100. The surface wettability was investi-
gated by a water (DI) drop contact angle measurement
using Contact Angle Meter-CAM 101 model (KSV Instru-
ments Ltd, FINLAND). AFM analysis was carried out in
room temperature with a Dimension 3100 SPM equipped
with Nanoscope IVa devised by Digital Instruments from
Santa Barbara, CA. The fluorescent patterns such as were
imaged under Olympus-BX51 fluorescence microscope
with WB – dichroic mirror DM500, excitation filter BP450-
480 and barrier filter BA515. The optical MSCs patterns
were obtained from Olympus inverted research microscope
model IX71. To detect cell patterns more in detail, MSCs
were observed with field emission-scanning electron micro-
scope (HITACHI S-800, Tokyo, Japan) and the picture was
taken by scanning microscope image analysis system
(ESCAN-4000, Bummi Universe, Tokyo, Japan)

The preparation of PMAn film and PMAn patterned
substrates
PMAn films having average thickness of 185 nm were pre-
pared by spin coating of chloroform solution of polymers
(1 wt %) at 1200 rpm for 15 s and then dried under room
temperature for solvent removal. These pristine PMAn
films, without pattern, were used for the spectroscopic
measurements, contact angle measurement, and the prolif-
eration assay of MSCs. For fluorescent pattern formation,
the PMAn films were illuminated with a high-intensity UV
lamp (13.05 mW/cm2) through a photomask. These PMAn
patterns were used for the AFM and MSCs pattern.

The analyses of PMAn surface with contact angle and
AFM measurements
Surface wettability of the PMAn films through photo-
reaction was investigated by water (DI) drop contact
angle measurement. PMAn films were illuminated by
high intensity UV source for 1, 3, 5, 10 mins. For surface
morphology experiments, the polymer films on silicon
wafer were illuminated by a high-intensity UV source for
15 min through a 10 μm line pattered photomask. AFM
analyses were carried out at room temperature with a
Dimension 3100 SPM equipped with Nanoscope IVa de-
vised by Digital Instruments from Santa Barbara, CA.
The AFM tip was oscillated at its resonance frequency
(75 kHz). Next, the tip was lifted with fixed distance
above the sample surface and scanned at that constant
height with a voltage applied.

Cell culture and proliferation assay on PMAn film
substrates
MSCs were thawed, placed at a density of about 10,000
cells/cm2 in 15 mL medium (α-MEM supplemented with
10 % FBS, 100 U/mL penicillin and 100 μg/mL strepto-
mycin) in a 75 cm flask (Nunc, Denmark), at 37 °C in 5 %
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humidified CO2. Medium was replaced with fresh α-
MEM with 10 % FBS, 100 U/mL penicillin and 100 μg/mL
streptomycin every 3 or 4 days and cells were grown to
90–95 % of confluence over about 3–7 days. Once the
cells reached confluence, they were detached using 0.05 %
Trypsin/EDTA and replaced for further expansion. The
MSCs in this study were between passage of 4 and 7.
To investigate the proliferation of MSCs on PMAn

film substrates, two PMAn films were prepared on glass
substrates by spin coating. One of the films was exposed
to UV source for 5 min and the other film was not ex-
posed to UV. The prepared PMAn film substrates were
washed with α-MEM supplemented with 10 % FBS, 100
U/mL penicillin and 100 ug/mL streptomycin. Cells
(from passage 4) were harvested by treating a solution of
0.05 % Trypsin/EDTA for 3–5 min at 37 °C, placed at
2,000 cells/cm2 in unexposed PMAn substrate and UV-
exposed PMAn substrate. Cells (from passage 4) were
harvested also on a tissue culture polystyrene as a refer-
ence experiment. Each well was dispensed with 3 mL α-
MEM medium and changed once after 2 days. Cultures
were maintained for 5 days and 7 days and then har-
vested for cell counting, respectively. This proliferation
assay was examined at three different times. The growth
rates for MSCs on the sample after 5 days and 7 days of
culture were determined by counting the number of cells
with a hemacytometer after tryphan blue staining in a
counting chamber.

Cell attachment to micro-patterned PMAn substrate
For cell patterning studies, the PMAn pattern on a glass
substrate (1.6 cm × 2.8 cm) was prepared by exposing
the pristine PMAn film on UV light for 5 min. The
micro-patterned substrates were placed in six well plate
(Nunc, Denmark) containing culture medium, α-MEM
supplemented with 10 % FBS, 100 U/mL penicillin and
100 μg/mL streptomycin. MSCs were detached from the
cell culture substrates by trypsinization. The cells at a
concentration of 4,000 cells/cm2 were seeded on a pat-
terned substrate in six well plate (Nunc, Denmark) and
maintained under culture condition for 2 days at 37 °C
in 5 % humidified CO2.

Results and discussion
Figure 1 shows the chemical structure of a highly fluor-
escent anthracene polymer (PMAn) where a polycyclic
aromatic compound, anthracene, is covalently connected
through a methylene bridge via Friedel-Crafts alkylation
reaction. This polymer is soluble in common organic
solvent such as chloroform, tetrahydrofuran, dichloro-
methane, and acetone. Thus, the polymer film surface
was easily prepared with a solution of polymer (1 wt %)
in chloroform by spin-coating process. The film thick-
ness of 185 nm was determined by an Alpha-step. The
thin film of PMAn showed an emission band maximized
at 535 nm (Fig. 2a). After UV exposure for 5 min under
air condition, 85 % of the emission intensity was

Fig. 1 The basic structure and photo-reactions of anthracene containing polymer (PMAn)

Fig. 2 a Fluorescence spectra change of a PMAn film depending on UV irradiation time, from top of bottom, 0, 1, 2, 3, 4, 5 min under air. b
Normalized FL intensity change of the film at 535 nm at different dose under air and argon condition. Film thickness: 185 nm

You et al. Biomaterials Research  (2016) 20:26 Page 3 of 7



significantly decreased. The fluorescence quenching re-
sulted from the photo-reactions such as photo-oxidation
and photo-dimerization of anthracene units exist in
polymer backbone structure (Fig. 1) [26, 28–31].
In order to understand the difference in the photo-

oxidation and photo-dimerization of PMAn in an atmos-
phere of air or argon (Ar), the decrease in emission in-
tensity was examined by irradiating the PMAn film at
various exposure doses (Fig. 2b).
When UV light was exposed to PMAn film surface in

an atmosphere of Ar, the relative emission intensity at
535 nm decreased from 1.0 to 0.58 (42 %). However, in
the presence of oxygen, relative emission intensity at
535 nm reduced drastically from 1.0 to 0.15 (85 %). The
relative decrease in emission at 535 nm in an atmos-
phere of Ar was smaller than that in air. This seems to
be because the photo-dimerization of the anthracene
units in the polymer is the only photochemical reaction
in the Ar condition, while the photo-oxidation as well as
photo-dimerization took place concomitantly in an at-
mosphere of air. This result indicated that both photo-
oxidation and photo-dimerization led to fluorescence
quenching in air.
As shown in Fig. 1, PMAn film undergoes photo-

oxidation to produce hydrophilic derivatives including en-
doperoxide formation, which can cause the change in sur-
face wettability. When PMAn film was exposed to UV
source for 0, 1, 3, 5, and 10 mins under air condition, the
contact angles of the PMAn film was found to gradually
decrease from 81° to 77°, 58°, 56° and 51° (Fig. 3). This

result supported that the photo-oxidation of PMAn film
resulted in the change in surface wettability to hydrophilic
surface, to trigger selective cell adhesion on UV exposed
region of PMAn film, as described below.
The photo-oxidation and photo-dimerization led to

fluorescence quenching resulted in fluorescent pattern
formation in thin film surface. When PMAn thin film
was exposed to UV source through a patterned mask for
5 min, clear fluorescent pattern was formed with
500 μm diameter circle and 50 μm wide line, depending
on the shape and size of photomask (Fig. 4a, b).
Figure 4c shows atomic force microscopy (AFM) image

of a 10 μm wide line pattern. The AFM image exhibits
that the pattern was formed with an average depth change
of 3.3 nm in the exposed region of the film after UV ex-
posure for 15 min. In addition, the AFM analysis exhibits
that the surface of the PMAn pattern was very smooth
and uniform for both the UV-exposed and unexposed re-
gions, with mean roughness (Rm) of 1.50. This result indi-
cates that the effect of topography change may be
negligible on the selective cell adhesion onto the micro-
patterned PMAn film. To investigate the proliferation rate
and biocompatibility of MSCs on PMAn film surfaces,
cells were cultured on three different substrates: (1) tissue
culture polystyrene (TCPS) as a reference, (2) UV unex-
posed PMAn film (PMAn-UV), and (3) UV exposed
PMAn film under air condition (PMAn+UV). As shown
in Fig. 5a, the daily proliferation rate of MSCs cultured on
PMAn-UV surface was much lower, compared to other
substrates. MSCs seeded on PMAn+UV at the density of

Fig. 3 Water contact angle change of a PMAn film depending on UV exposure time under air; p* < 0.05 compared to pristine PMAn film

Fig. 4 a and b Fluorescent microscope images of PMAn film with 500 μm diameter circle and 50 μm wide line patterns, respectively, prepared
by photo-reactions of PMAn under UV exposure. c AFM image of the PMAn film with 10 μm line pattern
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2.0 × 103 cells/cm2 were increased to 1.8 × 104 cells/cm2 (9
times) at day 7, which is comparable to that on TCPS. Fig-
ure 5b-d shows the optical microscopic images of MSCs
cultured on three different substrates at day 7.
It has been known that MSCs were selectively attached

on a hydrophilic surface [23, 32, 33]. Thus, micro pat-
terned PMAn substrate via photo-oxidation was ex-
pected for the formation of MSC patterning. MSCs were
seeded onto the fluorescent patterned surface of PMAn
in a culture medium and allowed to attach for overnight.
By comparison with the random attachment of MSCs on

tissue culture polystyrene, Fig. 6a-c clearly show that
MSCs were preferentially attached on the UV exposed
region of circle pattern with 500 um diameter and were
aligned in the direction of the line pattern with 50 un
width. This is probably because UV exposed regions be-
came hydrophilic surface, promoting the attachment of
MSCs. Interestingly, the pattern formation of MSCs was
dependent on the pattern size of PMAn. On the line pat-
tern with < 20 μm width, MSCs didn’t show selective ad-
hesion on UV exposed region and were randomly
attached on the whole pattern surface (Fig. 6d). This

Fig. 5 a Proliferation rate of MSCs cultured on TCPS as a reference, UV unexposed PMAn film (PMAn-UV), and UV exposed PMAn film (PMAn +
UV) in serum contained culture media at day 5 and 7. MSCs were seeded at a density of 2 × 103 cells/cm2 at first (white box). b-d The optical
microscopic images of MSCs cultured on three different substrates, TCPS, PMAn-UV, and PMAn + UV at day 7

Fig. 6 Optical microscopic images of MSCs cultured on (a and b) 500 μm dimeter circle, (c) 50 μm wide curved, (d) 20 μm wide line patterns of
PMAn films. Inset: The fluorescent microscope images of the same patterns. (e and f) Scanning electron microscope images of MSCs pattern on
50 μm wide line patterns of PMAn film
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may be ascribed to the size of MSCs, which are generally
larger than 20 μm. Figure 6e and f show the SEM images
of MSCs attached on UV exposed regions and aligned in
the direction of the line pattern of the PMAn. Overall,
the proliferation assay, optical microscopic and SEM im-
ages clearly support that the proliferation as well as the
attachment of MSCs was much more favorable on the
hydrophilic UV exposed regions of PMAn than UV un-
exposed regions of PMAn.

Conclusions
We have shown simple cell patterning method that
doesn’t require labor-intensive preparation for cell pat-
terning. The UV exposure to PMAn film leads to fluor-
escent quenching as well as the change in surface
wettability into hydrophilic surface due to direct photo-
reactions of anthracene units. In contrast to UV unex-
posed regions of PMAn film (PMAn-UV), UV exposed
regions of PMAn film (PMAn +UV) showed high prolif-
eration rate and selective attachment of MSCs. We envi-
sion that this simple cell pattern method may be
valuable for designing cellular platform for drug screen-
ing, diagnostics, and cellular/tissue engineering.

Abbreviations
AFM, atomic force microscopy; Ar, argon; FBS, Fetal Bovine Serum; GPC, gel
permeation chromatography; MSCs, mesenchymal stem cells; PBS,
Phosphate-Buffered Saline; PEG, poly (ethylene glycol); PMAn, anthracene
containing polymers; PMAn + UV, UV exposed PMAn film; PMAn-UV, UV un-
exposed PMAn film; PPV, p-phenylene vinylene; SAMs, self-assembled mono-
layers; TCPS, tissue culture polystyrene; α-MEM, α-Minimum Essential
Medium;

Acknowledgements
This work was supported by the National Research Foundation of Korea
(NRT) grant funded by the Korea government (MSIP) and a grant of the
Korea Health Technology R&D Project through the Korea Health Industry
Development Institute (KHIDI), funded by the Ministry of Health & Welfare,
Republic Korea.

Funding
This work was supported by the National Research Foundation of Korea
(NRT) grant funded by the Korea government (MSIP) (No.
2015R1C1A1A01054258) and a grant of the Korea Health Technology R&D
Project through the Korea Health Industry Development Institute (KHIDI),
funded by the Ministry of Health & Welfare, Republic Korea (No. HI15C0942).

Availability of data and materials
There was no available data and supporting materials.

Authors’ contributions
JY, HOK, and EK designed and drafted the manuscript. JY and JSH carried
out all of experiments. All authors read and approved the final manuscript.

Competing interest
The authors declare that they have no competing interests.

Ethics approval and consent to participate
All primary human cell experiments were reviewed and approved by a
board of Severance Hospital (University of Yonsei, Seoul, Korea).

Consent for publication
Authors consent for publication.

Author details
1Department of Plant & Environmental New Resources, Kyung Hee University,
1732 Deogyeong-daero, Giheung-gu, Yongin-si, Gyeonggi-do 446-701, South
Korea. 2Cell Therapy Center, Severance Hospital, Yonsei University College of
Medicine, Seoul, South Korea. 3Department of Laboratory Medicine, Yonsei
University College of Medicine, Seoul, South Korea. 4Department of Chemical
and Biomolecular Engineering, Yonsei University, 262 Seongsanno,
Seodaemun-gu, Seoul 120-749, South Korea.

Received: 8 June 2016 Accepted: 26 July 2016

References
1. Allcock H, Phelps M, Barrett E, Pishko M, Koh W. Photolithographic

development of polyphosphazene hydrogels for potential use in microarray
biosensors. Chem Mater. 2006;18:609–13.

2. You J, Shin D, Revzin A. Development of micropatterned cell-sensing
surfaces. Methods in Cell Biology. Methods Cell Biol. 2014;121:75–90.

3. Singhvi R, Kumar A, Lopez GP, Stephanopoulos GN, Wang DIC, Whitesides GM,
Ingber DE. Engineering cell shape and function. Science. 1994;264:696–8.

4. Chen C, Bang S, Cho Y, Lee S, Lee I, Zhang S, Noh I. Research trends in
biomimetic medical materials for tissue engineering: 3D bioprinting, surface
modification, nano/micro-technology and clinical aspects in tissue
engineering of cartilage and bone. Biomater Res. 2016;20:10–6.

5. Khademhosseini A, Langer R, Borenstein J, Vacanti JP. Microscale
technologies for tissue engineering and biology. Proc Natl Acad Sci U S A.
2006;103:2480–87.

6. Kim SY, Kang JH, Seo WS, Lee SW, Oh NS, Cho HK, Le MH. Effect of
topographical control by a micro-molding process on the activity of human
mesenchymal stem cells on alumina ceramics. Biomater Res. 2015;19:23–32.

7. Garnier F, Hadjlaoui R, Yasser A, Srivastava P. All-polymer field-effect
transistor realized by printing techniques. Science. 1994;265:1684–6.

8. He W, Halberstadt CR, Gonsalves KE. Lithography application of a novel
photoresist for patterning of cells. Biomaterials. 2004;25:2055–63.

9. Sorribas H, Padeste C, Tiefenauer L. Photolithographic generation of protein
micropatterns for neuron culture applications. Biomaterials. 2002;23:893–900.

10. Pogantsch A, Trattnig G, Langer G, Kern W, Scherf U, Tillmann H, Horhold
HH, Zojer E. Multicolor organic electroluminescent devices fabricated by a
reductive photo-patterning method. Adv Mater. 2002;14:1722–5.

11. Pogantsch A, Rentenberger S, Langer G, Keplinger J, Kern W, Zojer E. Tuning
the electroluminescence color in polymer light-emitting devices using the
thiol-ene photoreaction. Adv Funct Mater. 2005;15:403–9.

12. Revzin A, Tompkins RG, Toner M. Surface engineering with poly(ethylene
glycol) photolithography to create high-density cell arrays on glass.
Langmuir. 2003;19:9855–62.

13. You J, Raghunathan KJ, Son KJ, Patel D, Haque A, Murphy C, Revzin A. The
impact of topographic cues, heparin hydrogel microstructures and
encapsulated fibroblasts on phenotype of primary hepatocytes. ACS Appl
Mater Interfaces. 2015;7:12299–308.

14. You J, Shin D, Patel D, Gao Y, Revzin A. Multilayered heparin hydrogel microwells
for cultivation of primary hepatocytes. Adv Healthc Mater. 2014;3:126–32.

15. Seo JH, Shin D, Mukundan P, Revzin A. Attachment of hydrogel
microstructures and proteins to glass via thiol-terminated silanes. Colloids
Surf B Biointerfaces. 2012;98:1–6.

16. Bhuvana T, Kim B, Yang X, Shin H, Kim E. Reversible full color generation with
yellow electrochromic polymer patterns. Angew Chem Int Ed. 2013;52:1180–4.

17. Kim Y, Kim E. Conductive polymer patterning on a photoswitching polymer
layer. Macromol Res. 2006;14:584–7.

18. Rickard JJS, Farrer I, Oppenheimer PG. Tunable nanopatterning of conductive
polymers via electrohydrodynamic lithography. ACS Nano. 2016;10:3865–70.

19. Cho J, Anandakathir R, Kumar A, Kumar J, Kurup PU. Sensitive and fast
recognition of explosives using fluorescent polymer sensors and pattern
recognition analysis. Sensors Actuators B. 2011;160:1237–43.

20. Kim J, You J, Kim B, Park T, Kim E. Solution processable and patternable
poly(3,4-alkylenedioxy-thiophene)s for large area electrochromic. Adv Mater.
2011;23:4168–73.

21. Lee J, You J, Kim E. A triazine bridged p-phenylenevinylene polymer film for
biomolecular patterning. J Nanosci Nanotechnol. 2011;11:4439–43.

22. Kim J, You J, Kim E. Flexible conductive polymer patterns from vapor
polymerizable and photo cross-linkable EDOT. Macromolecules. 2010;43:2322–7.

You et al. Biomaterials Research  (2016) 20:26 Page 6 of 7



23. You J, Heo JS, Lee J, Kim HS, Kim HO, Kim E. A fluorescent polymer for
patterning of mesenchymal stem cells. Macromolecules. 2009;42:3326–32.

24. Wells LA, Brook MA, Sheardown H. Generic, Anthracene-Based Hydrogel
Crosslinkers for Photo-controllable Drug Delivery. Macromol Biosci.
2011;11:988–98.

25. Jin Q, Mitschang F, Agarwall S. Biocompatible drug delivery system for
photo-triggered controlled release of 5-fluorouracil. Biomacromolecules.
2011;12:3684–91.

26. Rameshbabu K, Kim Y, Kwon T, Yoo J, Kim E. Facile one-pot synthesis of a
photo patternable anthracene polymer. Tetrahedron Lett. 2007;48:4755–60.

27. Kim J, Anand C, Talapaneni SN, You J, Aldeyab SS, Kim E, Vinu A. Catalytic
polymerization of anthracene in a recyclable SBA-15 reactor with high iron
content by a Friedel–Crafts alkylation. Angew Chem Int Ed. 2012;51:2859–63.

28. Kim YW, Chae KH. Effects of oxygen on the photochemical behaviors of
methacrylic homopolymer containing anthracene groups. J Photosci.
2002;9:57–63.

29. Rubio MA, Lissi EA. Photooxidation of anthracene derivatives in AOT/
heptane reversed micelles. J Colloid Interface Sci. 1989;128:458–63.

30. Sinigersky V, Mullen K, Klapper M, Schopov I. Photostructuring and
consecutive doping of an anthracene-containing polymer: a new approach
towards conductive patterns. Adv Mater. 2000;12:1058–60.

31. Li T, Chen J, Mitsuishi M, Miyashita T. Photolithographic properties of
ultrathin polymer Langmuir–Blodgett films containing anthracene moieties.
J Mater Chem. 2003;13:1565–69.

32. Mitchell SA, Davidson MR, Bradley RH. J. Improved cellular adhesion to acetone
plasma modified polystyrene surfaces. Colloid Interface Sci. 2005;281:122–9.

33. Sommani P, Tsuji H, Sato H, Hattori M, Yamada T, Gotoh Y, Ishikawa J.
Mesenchymal stem cell attachment properties on silicone rubber modified by
carbon negative-ion implantation. Trans Mater Res Soc Jpn. 2007;32:921–4.

•  We accept pre-submission inquiries 

•  Our selector tool helps you to find the most relevant journal

•  We provide round the clock customer support 

•  Convenient online submission

•  Thorough peer review

•  Inclusion in PubMed and all major indexing services 

•  Maximum visibility for your research

Submit your manuscript at
www.biomedcentral.com/submit

Submit your next manuscript to BioMed Central 
and we will help you at every step:

You et al. Biomaterials Research  (2016) 20:26 Page 7 of 7


	Abstract
	Background
	Results
	Conclusion

	Background
	Methods
	Materials
	Instruments
	The preparation of PMAn film and PMAn patterned substrates
	The analyses of PMAn surface with contact angle and AFM measurements
	Cell culture and proliferation assay on PMAn film substrates
	Cell attachment to micro-patterned PMAn substrate

	Results and discussion
	Conclusions
	Abbreviations
	Acknowledgements
	Funding
	Availability of data and materials
	Authors’ contributions
	Competing interest
	Ethics approval and consent to participate
	Consent for publication
	Author details
	References

