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Abstract

Background: Antibacterial coatings of medical devices have been introduced as a promising approach to reduce
the risk of infection. In this context, diamond-like carbon coated polyethylene (DLC-PE) can be enriched with
bactericidal ions and gain antimicrobial potency. So far, influence of different deposition methods and ions on
antimicrobial effects of DLC-PE is unclear.

Methods: We quantitatively determined the antimicrobial potency of different PE surfaces treated with direct ion
implantation (Il) or plasma immersion ion implantation (Plll) and doped with silver (Ag-DLC-PE) or copper
(Cu-DLC-PE). Bacterial adhesion and planktonic growth of various strains of S. epidermidis were evaluated by
quantification of bacterial growth as well as semiquantitatively by determining the grade of biofilm formation by
scanning electron microscopy (SEM). Additionally silver release kinetics of Plll-samples were detected.

Results: (1) A significant (p < 0.05) antimicrobial effect on PE-surface could be found for Ag- and Cu-DLC-PE
compared to untreated PE. (2) The antimicrobial effect of Cu was significantly lower compared to Ag (reduction of
bacterial growth by 0.8 (Ag) and 0.3 (Cu) logarithmic (log)-levels). (3) Plll as a deposition method was more effective
in providing antibacterial potency to PE-surfaces than Il alone (reduction of bacterial growth by 2.2 (surface) and 1.1
(surrounding medium) log-levels of Plll compared to 1.2 (surface) and 0.6 (medium) log-levels of Il). (4) Biofilm
formation was more decreased on Plll-surfaces compared to Il-surfaces. (5) A silver-concentration-dependent release
was observed on Plll-samples.

Conclusion: The results obtained in this study suggest that Pl as a deposition method and Ag-DLC-PE as a surface
have high bactericidal effects.
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Background

Implant-associated bacterial infections are one of the most
serious complications in orthopedic surgery, representing
a significant healthcare and economic burden [1]. Man-
agement of these infections often requires multiple de-
bridement surgeries, and long-term systemic antibiotic
therapy, despite the associated side effects and additional
complications [2]. One of the major problems in septic
surgery is the formation of biofilm on implanted foreign
materials [3, 4]. These extracellular polysaccharide layers
impede the activity of the host defenses and antibiotic
therapy, leading to a 1000-fold decreased susceptibility to
antimicrobial agents, and further promotion of bacterial
survival and growth [5]. Once a significant amount of bio-
film has formed, eradication of infection is nearly impos-
sible without removing the implant. Therefore, prevention
of these infections has an important impact on patient’s
morbidity and the cost effectiveness of hospital care [6].
In this context, employment of implant materials or coat-
ings that control infection and biofilm formation are par-
ticularly advantageous [7]. This led to the development of
antiadhesive and antibacterial surfaces. The first men-
tioned coatings (e.g. polyethylene glycol, polyethylene
oxide brushes) reduce bacterial adhesion by altering the
physicochemical properties of the substrate. Thus, forma-
tion of protein surface layers (conditioning films) on the
implant and bacteria-substrate interactions are hindered
[8]. However, the effectiveness of these coatings for redu-
cing bacterial adhesion is very limited and varies markedly
depending on bacterial species. On the other hand, non-
antibiotic antibacterial coatings actively release bacteri-
cidal agents, e.g. silver (Ag)- [9, 10] and/or copper (Cu)
[11]. In contrast to antibiotics these ions act more broadly
against a wide range of bacteria, and microbes that are not
intrinsically resistant [12] will rarely develop resistance
[13]. However, there are concerns regarding a possible
toxicity of silver-coated medical devices [10]. Cu on the
other hand has been shown to possess outstanding anti-
bacterial but nevertheless bio-tolerant features [11, 14]. A
problem concerning Ag and Cu as bactericidal agents in
coatings is the fact that they can hardly be embedded on
wear surfaces, e.g. polyethylene (PE). PE is in widespread
use in total joint arthroplasty due to its outstanding mech-
anical properties as a wear surface and simultaneously its
high biocompatibility. On the other hand PE is highly
prone to bacterial adherence. In total knee replacement
roughly half of the surface is exposed to synovial fluid and
in main parts tribologically active. Therefore in septic knee
surgery major portions of the susceptible prosthesis are
not protected against bacterial reinfection. A potential so-
lution to this problem could be the use of antibacterial-
agent-enriched diamond-like carbon (DLC) coatings. DLC
coatings can act as local antibacterial agents if release of
Ag (Ag")- or Cu (Cu*)-ions is provided [15-17], and at
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the same time exhibit excellent tribological features if used
for hip or knee arthroplasty [18-21]. In spite of these
promising results, to our best knowledge, comprehensive
studies on antibacterial effects of DLC coatings on soft
wear surfaces, e.g. polyethylene (PE), comparing Ag and
Cu have not been conducted so far. Additionally, data on
the use of different deposition methods for DLC coatings
and its influence on antimicrobial effects are still lacking.

In this report the antimicrobial effects of Ag- and Cu-
incorporated DLC coatings on PE manufactured with
different techniques are described. The coatings and
films were deposited by two methods of IBAD (plasma
immersion ion implantation (PIII) and conventional ion
implantation (II)). Bactericidal potency of DLC speci-
mens enriched with Ag or Cu was studied on the surface
and the surrounding fluid medium. This study provides
valuable information for determining the suitability of
DLC-PE enriched with Ag or Cu. Ethics approval for this
study was not necessary according to the institutional
review board (TU Miinchen).

Methods

DLC film deposition

To incorporate Ag or Cu homogenously within the DLC
matrix of PE-samples modified techniques of ion irradi-
ation of polymers were applied: DLC-processing was
achieved by either conventional, direct ion implantation
(IT) via ion bombardment or plasma immersion ion im-
plantation (PIII) [22]. Both methods are described sche-
matically in Fig. 1. Main disadvantage of conventional II
is that only a relatively small part of the surface which is
targeted by the beam can be enriched with ions. This
makes ion-containing DLC-processing of 3D-surfaces
(e.g. joint prostheses) time-consuming and expensive.
On the other hand, ion implantation with PIII is easy to
perform due to the liquid plasma state of the coating
fluid. This allows coating of complex shaped surfaces
without major efforts. In contrast to common DLC tech-
niques (e.g., physical vapor deposition) with both
methods used in this study the PE-surface is not coated
with DLC but rather modified by ion implantation. Due
to the kinetic energy of the implanted ions, the polymer
surface is modified from crystalline PE to amorphous
DLC, while the metal ions agglomerate to nano-particles
directly under the surface. In this way, the implantation
of ions leads to a wear-resistant, antibacterial PE surface
reducing the risk of detachment compared to surface
coatings [23].

Sample features

Study objects were cylindrical substrates (diameter:
10 mm, height: 2 mm; Goodfellow GmbH, Nauheim,
Germany) of ultrahigh molecular weight polyethylene
(PE). The samples were investigated in different groups
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with modified parameters of implantation: Firstly, to de-
termine which of the ions (Ag or Cu) exhibits higher
bactericidal potency (first group) and secondly, to deter-
mine the influence of different deposition methods (sec-
ond group). All sample features and testing groups are
given in Table 1.

In the first group Ag-doped (fluence: 1x10* cm™,
ion energy: 60 keV) and Cu-doped samples (fluence:
1x10"” c¢m™ ion energy: 55 keV) were assembled for

direct comparison of antibacterial activity of these
ions. DLC processing was carried out via II of Ag- or
Cu-ions. Ion energy was chosen according to previous
results, where these enrgies led to a superficial im-
plantation of ions allowing dissolution onto the sur-
face and therefore exhibiting bactericidal effects. With
this features the effect of fluence and implantation
depth can be minimized so that the intrinsic bactericidal
effects of the ions can be estimated. Ion energy of Cu-

Table 1 Physical parameters of DLC conversion and antibacterial effect of different surfaces compared to untreated PE

DLC-processing  Surface Bacterial growth  p-values Planktonic growth  Bacterial growth  p-values
(implantation adhesion [CFU; of Ag-DLC-PE [CFU/mI; of Ag-DLC-PE
energy, fluence) mean +/— SD] llog-levels ¢/ %] mean +/— SD] [log-levels® / %)°
Comparison of Il (Ag): 60 keV,  2.6x10°+/— 25x10° —08/-856%  <.05* 1.7x10°+/- 85x10*  +005/ +133% >05* 1st Group
antibacterial ions  1x10" cm™
deposited with II:
Ag vs. Cu
Il (Cu): 55 keV,  9.0x10°+/— 26x10°  —03/-500%  <O05* 1,6x10°+/— 95x10% 4003 /+66 %  >.05* 1st Group
1x10" cm™2
I (Ag) vs. Il (Cu) <05 >.05 1st Group
Untreated PE 1.8x10%+/— 94x10° 15x10°+/— 2.8x10* 1st Group
Comparison of Pl (Ag): 5 kV, 2,5><WO2 +/—15x10° =22/-99.1 % <.05% 1,1x10%/— 25x10° =1.1/-963 % <.05% 2nd Group
deposition 1x10" cm™2
methods:
PllFvs. 1l
Il (Ag): 10 keV,  23x10°+/= 35x10° —12/-920%  <05*  36x10*%/— 1.2x10° —06/-880%  <05*  2nd Group
1x10" cm™
PIIl (Ag) vs. <05 <05 2nd Group
Il (Ag)
Untreated PE 29x10* +/— 2.0x10" 3.0x10°+/— 6.5x10" 2nd Group

log-levels = bacterial counts calculated as shown in following equation: log-levels = log;o(CFU of Ag-DLC-PE) - log;o(CFU of untreated PE)
Ppositive values (log-levels/%) express increased bacterial growth on Ag-DLC-PE compared to PE, negative values express reduced bacterial growth on Ag-DLC-PE
compared to PE fluence = amount of ions received by a surface per unit area [ions/cm?]

* = compared to untreated PE

Plll (Ag) plasma immersion ion implantation of Ag-ions

Il (Ag/Cu) conventional ion-implantation with Ag- or Cu-ions
CFU colony forming units

SD standard deviation
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samples was lower compared to Ag-samples due to the
fact that Cu-ions penetrate easier into the PE-surface.
Therefore Cu-ions reach the same penetration depth as
Ag-ions with lower implantation energies. Based on the
findings of the first group the second group was assem-
bled with two different methods of ion deposition: PIII
(fluence: 1x10"” cm™% pulse voltage: 5 kV) vs. II (fluence:
1x10"” cm™; ion energy: 10 keV). Again, different ion en-
ergies were applied for either methods to allow equal
penetration depth of ions into the samples. Non-modified
PE samples served as a control.

After sample preparation incubation for 24 h with
Staphylococcus epidermidis (ATCC35984) was carried
out. Thereafter, antimicrobial effects on the sample’s sur-
face (i.e. bacterial sessile growth) and the surrounding
fluid medium (i.e. bacterial planktonic growth) were
investigated.

Evaluation of silver release

Silver release kinetics was evaluated for samples with the
highest intrinsic antimicrobial potency, namely Ag-DLC-
PE samples deposited with PIII. Sample plates were
placed into 10 ml phosphate buffered saline (PBS) and
kept sealed for 10 days at 37 °C. Every 24 h PBS was har-
vested and replaced. For every Ag-enriched sample type
(fluences: 1 x 10", 5 x 10™® and 1 x 10*® cm™) five speci-
mens were investigated. Untreated PE served as control.
Analysis of silver release kinetics of the harvested PBS
was conducted via ICP-OES (inductively coupled plasma
optical emission spectroscopy, Fa. Varian, Vista-MPX,
Kleve, Germany).

Sterilization of samples and sealing of surfaces with
paraffin wax

Samples were treated according to a previously described
standardized method [24]. Briefly summarized, specimens
were rinsed with distilled water for 10 min, air-dried in a
laminar flow cabinet and thereafter sterilized with gamma-
beam with the dose of 26.5 kGy (Isotron Deutschland
GmbH, Allershausen, Germany).

Bacterial sample preparation

The bacterial strains used in the present study were S.
epidermidis (ATCC 35984; LGC Standards GmbH,
Wesel, Germany) for determination of surface and
planktonic growth and a strong biofilm-forming variant
of S. epidermidis (RP62a; LGC Standards GmbH, Wesel,
Germany) for scanning electron microscopy (SEM-)
evaluation of biofilm formation on the samples. These
strains are of major clinical importance in implant-
associated infections [25, 26]. Test strains were routinely
cultured in Columbia Agar with 5 % sheep blood (S. epi-
dermidis, ATCC 35984) or Trypticase™ Soy Agar (S. epi-
dermidis, RP62a) (Becton Dickinson, Heidelberg,
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Germany) at 37 °C overnight before testing. Bacteria
were then harvested by centrifugation, rinsed, sus-
pended, diluted in sterile phosphate buffered saline
(PBS) and adjusted by densitometry to a MacFarland 0.5
standard (MacFarland Densimat™, BioMérieux, Marcy
I'Etoile, France). To control bacterial concentration,
100 pl of each suspension was again cultured for 24 h at
37 °C. After 24 h serial dilutions of this suspension were
plated on Colombia-Agar. The colonies were counted
and colony numbers calculated accordingly. For the
study every suspension with its known bacterial concen-
tration was diluted with DMEM + 10 % FCS to reach the
targeted value for bacterial concentration (10> CFU/ml).
Sample plates with paraffin-coated lower surfaces were
placed in 24-well culture plates and 1 ml of 10> CFU/ml
bacterial suspensions were added. Incubation of the well
plates was conducted for 24 h at 37 °C.

Microbiological analysis

Bacterial surface adhesion was evaluated by determining
bacterial concentration on the specimen. Bacterial plank-
tonic growth was measured in the growth medium. For
every group four independent testing runs with four dif-
ferent samples were conducted. Therefore, altogether 16
samples were tested for every group.

Determination of bacterial growth on the sample surface
Colonized sample plates were removed from the wells
with a sterile forceps, carefully rinsed twice with sterile
PBS, transferred to vials containing 3 ml of sterile PBS
and sonicated for 7 min (Elmasonic S60H, Elma, Singen,
Germany) to remove adhering bacteria. 100 pl of the
fluid were aspirated, plated on Colombia Agar at 37 °C
for 24 h and quantified after incubation (CFU/ml,
Fig. 2).

SEM-analysis was conducted semiquantitatively to
evaluate inhibition of biofilm formation. SEM-images
were compiled of native DLC coated PE samples and
Ag-DLC-PE samples treated with II and PIII. Biofilm
formation was quantified in five categories: (1) no bio-
film formation, (2) biofilm covering less than 25 % of the
surface, (3) biofilm covering between 25 and 75 % of the
surface, (4) biofilm covering more than 75 % of the sur-
face, (5) biofilm formation covering the entire surface.
Two different observers (NH, SJ) graded five randomly
chosen fields of every sample in three runs.

Determination of bacterial planktonic growth

A 700-pl volume of each well was supplemented with
700 ul neutralizing solution as described by Tilton: 1,0 g
sodium thioglycolate + 1,46 g sodium thiosulfate in
1.000 ml deionized water [27]. The neutralizing solution
acts as an inhibitor for reminiscent metal toxicity on
bacteria. The suspension was plated on Columbia Agar
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after serial dilutions and incubated at 37 °C for 24 h.
Thereafter, CFU were quantified and extrapolated to
CFU/ml (Fig. 2).

Statistics

All results are presented as means + standard deviation.
Statistical significance was computed using non-
parametric methods and the method of closed testing
procedure (Kruskal-Wallis and Mann—Whitney U test).
P <0.05 was considered statistically significant. Statistical
tests were performed with use of SPSS (version 20.0;
Chicago, Illinois). Statistical analysis was conducted per
consultation with the Institute of Medical Statistics and
Epidemiology (Klinikum rechts der Isar, Technische
Universitdt Minchen, Munich, Germany).

Results

Antimicrobial effect of Cu- and Ag-DLC-PE with equal
penetration depth of ions in the surface layers (ion en-
ergy: 55 keV for Cu and 60 keV for Ag) and equal fluences
(1x10"7 em™)

Compared to untreated PE on Cu- and Ag-DLC-PE
samples a significantly decreased bacterial growth was
evident (Table 1, Fig. 3). Comparison of Cu- and Ag-
DLC-PE samples among each other revealed a signifi-
cant reduction of bacterial surface growth on Ag-DLC-

PE samples. Analysis of planktonic growth in the super-
natant growth medium showed no significant antibacter-
ial effects neither for Cu- nor Ag-DLC-PE samples
(Table 1, Fig. 3). Due to superior bactericidal effects of
Ag-DLC-PE compared to Cu-DLC-PE further testing
was only conducted with Ag-specimens.

Antimicrobial effect of Ag-DLC-PE processed with differ-
ent deposition techniques (Plll vs. Il) and equal fluences
(1x10"7 em™)

Samples treated with PIII and II showed both a signifi-
cantly decreased bacterial surface adhesion compared to
PE by 2.2 and 1.2 log-levels respectively. Comparison of
PIII and II revealed a significant reduced amount of bac-
teria for PIII-samples. Analysis of planktonic growth
showed again significantly reduced bacterial concentra-
tions for either deposition techniques. Similar differ-
ences were found for bacterial concentrations in the
surrounding medium (Table 1, Fig. 4).

Surface biofilm formation in scanning electron
micrographs

Biofilm formation was ubiquitous and graded type 5 on
all native PE samples. The entire specimen surfaces were
covered with thick layers of S. epidermidis. Ag-DLC-PE
samples treated with II on the other hand showed
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biofilm inhibiting effects with at the most rare spot-like
biofilm formation. Average grading for this group were
type 4. Samples treated with PIII showed less biofilm
formation compared to II-samples. Average grading for
this group were type 3 (Fig. 5).

Silver release kinetics

Silver release kinetics was evaluated for samples which
provided the highest bactericidal potency (PIII-samples).
Ag concentration of untreated PE throughout the 10 days
was considered as the lower detection limit. Due to high
sensitivity of the method values were not zero for these
specimens. Ag release of specimens with fluences of
1x10" ecm™ and 5x 10" cm™? showed an exponen-
tially decrease up to five days from the beginning of
the test (Fig. 6). Thereafter a steady state with

minimal decrease of Ag release was achieved. Ag re-
lease of Ag-DLC-PE with a fluence of 1x10'® cm™
was equal to the values of untreated PE and therefore
below the lower detection limit.

Discussion

Since the first applications of surgically-implanted mate-
rials in humans, bacterial infections have represented a
common and challenging problem [1, 25]. More than 2.6
million orthopedic implants are performed annually in
the United States, hence the incidence of implant-
associated infections is also increasing [28]. Most im-
portant in the pathogenesis is the colonization of the de-
vice surface by formation of a biofilm [9, 29-31], at
which Staphylococci and Streptococci are most fre-
quently implicated as the etiologic agents [25, 32].
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Fig. 5 SEM-images to exemplify biofilm formation on different polyethylene surfaces. Homogenous biofilm grade 5 after incubation with
S. epidermidis on native PE (a), reduced biofilm grade 3 on Ag-DLC-PE processed with PIll (5 KV, 110" cm ™, b)

Recent strategies to lower peri-implant infection rates
are based on the primary prevention of bacterial adhe-
sion by non-adhesive coatings [33, 34] or impairment of
bacterial survival and biofilm formation by surface coat-
ings releasing non-antibiotic organic [35-37] and inor-
ganic agents like Ag®, Cu'" or nitric-oxide [12, 38-40].
To our best knowledge, few attempts have been con-
ducted so far to apply Cu- or Ag-DLC coatings on PE
surfaces [24]. DLC surface modifications could be prom-
ising, based on the finding that DLC applied at PE is
known to exhibit excellent wear behavior [18-20]. A
previous study described significant antibacterial potency
of Ag-DLC-PE [24], whether DLC coatings enriched
with Cu provide the same ability is still unclear. Add-
itionally, no data are available regarding comparison of
different DLC deposition methods.

Ag seems to be of outstanding value in the prevention
and treatment of implant associated infections [41-43].
Ag acts by binding to membranes, enzymes and nucleic
acids. Consequently the respiratory chain is inhibited
and therefore the aerobe metabolism of microorganisms

'd N\
424 a  1x10”
% 16
5x10
1,0 4 A lxlols
E untretaed PE
ol
Y 0,8+
=
2
2 06
D
= |
St
= 0,4
E ¢ } :
= |
0,2 ¢ i i % LI
¢ @ * 5 3
00— 4 4 & 4 o oz 4 & 7
0 4 6 8 10
days

Fig. 6 Silver release kinetics of different Ag-DLC-PE (deposition
method: Plll: fluence: 1 x 10" cm™, 5% 10'® cm ™, and 1x 10'® cm™)
and untreated PE samples

disturbed [9]. Bacteria are quite susceptible to Ag with
only negligible possibility of intrinsic resistance [12]. On
the other hand, possible toxicity of silver-coated devices
is still on debate, which limits its clinical use [10].
Therefore, in the present study one sample series was
conducted with Cu-doped DLC coatings since some au-
thors found Cu-ions having an outstanding position as
an antibacterial but nevertheless bio-tolerant additive to
coatings [14]. Besides these advantages a major disad-
vantage is the fact that Cu is difficult to implant on hard
surfaces, e.g. titanium. The reason is its low solubility in
ethanol-based solutions so that assembly of high dosage
colloidal solutions for dip-coating is not possible. Cu
highly tends to agglomerate in polyvinylpyrrolidone-
matrix [44]. This would be limiting in the manufacturing
process of DLC coated joint prostheses.

Our results demonstrated minor antibacterial effects
on the surface of Cu- compared to Ag-DLC-PE samples
(Table 1, Fig. 3). This finding was similarly described on
other Cu-containing materials by other investigators
[39]. We implanted Cu-ions in the same depth of the
samples as Ag-ions. This is crucial in the assessment of
antibacterial effects. If ion deposition within soft surfaces
is performed with high energies (>80 keV) a rather deep
deposition and concomitant slow or missing dissolution
of ions onto the surface and into the surrounding
medium is achieved. Consequently low bactericidal ac-
tivity of these samples has to be expected [24]. Due to
inferior antibacterial effects of Cu compared to Ag fur-
ther testing was only conducted with Ag-DLC-PE.

Another finding in the present study was a deposition-
depending antibacterial effect of Ag-DLC-PE. A wide
variety of techniques have been employed for the synthe-
sis of DLC coatings [19]. Among them, ion beam
assisted deposition (IBAD) has great advantages for bio-
medical applications. It can produce thin films at low
substrate temperature suitable for the majority of bio-
medical materials [45]. The most common used tech-
niques for DLC processing are plasma-based, e.g.
chemical vapor deposition (CVD) or physical vapor
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deposition (PVD) [46]. These methods are merely depos-
ition techniques resulting in adhesive problems due to
high internal stresses of DLC layers [47]. The methods
of DLC processing in the present study (PIII and II) pro-
vide penetration of ions into the PE and concomitant
DLC modification of these superficial layers. This fact
diminished adhesion problems [48]. In this context, PIII
is faster and more cost-effective compared to conven-
tional II and allows DLC coating of complex-shaped sur-
faces, e.g. joint prostheses [49]. The resulting film
properties after PIII treatment should be comparable to
those achieved by direct II. On the other hand a clear
superiority regarding the bactericidal potency of PIII-
samples compared to II-samples was found in the
present study. A possible explanation is a quicker dissol-
ution of Ag-ions from the surface of PIII-samples.
Therefore, release kinetics of Ag was investigated for
these specimens. A high and earlier peak of initial dissol-
ution of Ag for samples with high fluences (=5 x 10'® cm™
was found (Fig. 6). This “hit-hard-and-early-“effect is cer-
tainly crucial for the strong bactericidal potency of these
coatings. In this context, a large clinical trial revealed no
significant differences between silver-coated and uncoated
medical devices [50]. One reason for this finding is
that the tested coatings did not actively release silver
ions. On the other hand, materials that actively re-
lease silver in the surrounding medium however have
exhibited strong antibacterial activity [12]. Regarding
the results of the present study, it is conceivable that
samples with equal fluences but deposited with II
would have had a lower peak of Ag release. This re-
sults in lower bactericidal potency within the first
days due to lack of high concentrations of antibacter-
ial ions on the sample’s surface and the surrounding
medium. The fact that relatively low concentrated
(fluence < 5 x 10" cm™?) Ag-samples deposited with PIII
did not release Ag can be explained with the “catching-ef-
fect” of low amounts of Ag in the polymer matrix [1]. In
these circumstances no Ag-nanoparticles are formed and
therefore Ag is trapped in superficial PE-layers without
the possibility of dissolution.

This study involves several limitations. First, only two
bacterial strains were used. Although the investigated
strains are of major importance in periprosthetic joint
infections, antibacterial effect against other bacteria has
to be investigated in future studies. In fact, several stud-
ies confirmed even higher bactericidal potency of Ag
against Gram-negative compared to Gram-positive bac-
teria [51, 52]. Second, Cu was only used in the first
group. It remains unclear, whether Cu deposited with
PIII would lead to increased antibacterial potency in
these samples. However, antibacterial effects are caused
by the intrinsic activity of the ion and this has been
shown to be higher for Ag- compared to Cu-ions. Third,
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antibacterial effects on the sample surface could be sup-
ported by antiadhesive features of DLC alone. A signifi-
cant antibacterial effect of DLC-PE without integrated
Ag/Cu, on the other hand, could be ruled out in our
previous experiments [53]. Fourth, no influence of Ag-
DLC on osseointegration was investigated. A negative ef-
fect on eukaryotic cells in this context could be of major
interest in the clinical use of this antibacterial coating
even though PE is not used with direct bone contact.
However, further investigations are needed in order to
clear whether the antibacterial effect of Ag-DLC-PE sur-
faces is sufficient to avoid implant infection in-vivo.

Conclusion

Taken together, our findings strongly support further in-
vestigation of Ag-DLC conversion of PE manufactured
with PIII for prophylaxis of implant-associated infec-
tions. Antibacterial effectiveness of Ag-DLC-PE has been
demonstrated. The suitability of this surface modifica-
tion for biomedical applications will be confirmed by fu-
ture studies.
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