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Abstract 

Background Drug-resistant bacterial infections in chronic wounds are a persistent issue, as they are resistant to anti-
biotics and can cause excessive inflammation due to generation of reactive oxygen species (ROS). An effective solu-
tion would be to not only combat bacterial infections but also scavenge ROS to relieve inflammation at the wound 
site. Scaffolds with antioxidant properties are attractive for their ability to scavenge ROS, and there is medical demand 
in developing antioxidant enzyme-mimicking nanomaterials for wound healing.

Methods In this study, we fabricated copper-coordination polymer nanoparticles (Cu-CPNs) through a self-assembly 
process. Furthermore, ε-polylysine (EPL), an antibacterial and cationic polymer, was integrated into the Cu-CPNs struc-
ture through a simple one-pot self-assembly process without sacrificing the glutathione peroxidase (GPx) and super-
oxide dismutase (SOD)-mimicking activity of Cu-CPNs.

Results The resulting Cu-CPNs exhibit excellent antioxidant propertiesin mimicking the activity of glutathione 
peroxidase and superoxide dismutase and allowing them to effectively scavenge harmful ROS produced in wound 
sites. The in vitro experiments showed that the resulting Cu-CPNs@EPL complex have superior antioxidant properties 
and antibacterial effects. Bacterial metabolic analysis revealed that the complex mainly affects the cell membrane 
integrity and nucleic acid synthesis that leads to bacterial death.

Conclusions The Cu-CPNs@EPL complex has impressive antioxidant properties and antibacterial effects, making it 
a promising solution for treating drug-resistant bacterial infections in chronic wounds. The complex’s ability to neu-
tralize multiple ROS and reduce ROS-induced inflammation can help relieve inflammation at the wound site.

Keywords Copper-coordination polymer nanoparticles, Reactive oxygen species, Nanozyme, Anti-inflammation, 
Anti-bacteria
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Graphical Abstract
Schematic illustration of the ROS scavenging and bacteriostatic function induced by Cu-CPNs@EPL nanozyme 
in the treatment of MRSA-infected wounds.

Introduction
Diabetes has high prevalence worldwide and threatens 
global public health [1, 2]. Diabetic ulceration is a com-
mon diabetic complication, and it causes chronic wound 
infection that is a serious medical problem that threat-
ens the health and quality of life of diabetic patients 
[3–5]. ROS are generated during incomplete oxygen 
metabolism, and under diabetic conditions, immune 
cells increase ROS levels in the wound microenviron-
ment, leading to stubborn scars and prolonged wounds 
[6–8]. The superfluous ROS within the impaired wound 
can promote intense inflammatory reactions to make the 
wounds fragile, but also restricts skin regeneration by 
stem cells and macrophages [9]. In addition to impeding 
wound healing, excessive ROS can cause damage to the 
function of the organism’s macromolecules, leading to 
oxidative stress. This breaks the redox homeostasis and 
cause serious harm to the organism. ROS also inhibit 
vascular regeneration and result in endothelial dysfunc-
tion. To combat these negative effects, it is important to 
develop strategies for scavenging ROS and maintaining 

redox homeostasis. In addition, diabetic wounds with 
hyperglycemic microenvironment are very susceptible 
to recurrent bacterial infections due to hypoimmun-
ity, and the bacterial infection would further elevate the 
ROS level in wound. In this regard, the process of wound 
recovery is largely hindered by the abundant oxidative 
stress in the injured wound [10–12]. To overcome these 
challenges, it is crucial to develop effective treatments 
that can simultaneously target bacterial infections and 
scavenge excessive ROS, promoting the recovery of dia-
betic wounds.In cellular enzyme-involved metabolism, 
oxygen undergoes a series of one-electron reactions, 
which alternately leads to the formation of several kinds 
of ROS, including superoxide anion  (O2

•−), hydroxyl 
radical (OH·), and hydrogen peroxide  (H2O2). To defend 
against excessive ROS, the body has endogenous anti-
oxidases, such as catalase (CAT), SOD, and GPx, are 
capable of catalyzing the disproportionation reactions of 
 O2

•− and  H2O2 into  H2O [6, 13, 14]. However, these nat-
ural enzymes are usually unstable, with a short half-life 
in circulation, and are hard to be adequately produced 
in wound [15]. Nanozymes are promising alternatives 
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to natural enzymes in various applications due to their 
high stability, low cost, and adjustable catalytic activities 
[16, 17]. Nanomaterials with enzyme-mimicking activ-
ity are promising for regulating cellular redox balance 
and reducing oxidative damage due to their low cost, 
large surface area, and stability in harsh conditions. A 
diversity of nanomaterials, including ceria, manganese 
dioxide, polydopamine nanoparticles, metal–organic 
frameworks, and Prussian blue have been developed as 
efficient nanozymes that mimic antioxidases, providing 
higher stability and availability compared to endogenous 
antioxidants, and all of which could potentially alleviate 
oxidative damage and inflammation reaction in vivo [15, 
18–23].

Metalloenzymes are a category of oxidoreductases 
that initiate cellular redox reactions with biochemicals 
through using lone pair electrons associated with pro-
ton translocation. Nanozymes that mimic single-com-
ponent oxidoreductases and endogenous antioxidants 
alone may not effectively alleviate oxidative injury due 
to the presence of multiple ROS in diabetes. Therefore, 
it is challenging to formulate nanomaterial with sim-
ple structure and remarkable ROS scavenging ability 
for biomedical applications. Copper ions play a cru-
cial role in cellular redox reactions as redox cofactors 

for enzymes such as tyrosinase, laccase, and Cu/Zn-
SODs. Copper ions cycle between Cu(II) and Cu(I) 
states in these reactions [24–26]. The Cu(I) form is the 
important component that travels and senses intracel-
lularly, so it is vital to keep cellular copper in the Cu(I) 
valence state for optimal biomedical use [27]. Thus, it 
is essential to develop copper-based nanomaterials with 
Cu(I) state component which are capable of scaveng-
ing endogenous ROS. In addition, it was reported that 
copper ions also have a strong impact on wound heal-
ing through contributions to angiogenesis and collagen 
deposition [28–31].

The study aims to develop a solution to treat drug-
resistant bacterial infections in chronic wounds with 
the Cu-CPNs complex which was endowed with anti-
oxidant properties to scavenge harmful ROS produced 
in wound sites and relieve inflammation. We fabricated 
this antioxidant nanozyme system to reduce the level 
of ROS and enhance wound healing. The nanozyme 
was prepared using guanosine monophosphate (GMP) 
as the coordination scaffold and copper ion as the 
center of coordination polymer nanoparticles (CPNs) 
(Fig.  1). The resultant Cu-CPNs@EPL complex exhib-
ited impressive antioxidant properties and antibacte-
rial activity, making it valuable for potential clinical 

Fig. 1 Schematic illustration of the ROS scavenging and bacteriostatic function induced by Cu-CPNs@EPL nanozyme in the treatment 
of MRSA-infected wounds
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translation into treatments against drug-resistant bac-
terial infections in chronic wounds.

Materials and methods
Materials
Copper chloride dihydrate  (CuCl2·2H2O), glutathione, 
methionine, 5,5’-dithiobis (2-nitrobenzoic acid) 
(DTNB), glutaraldehyde solution (25%), EPL, glucose, 
gelatin, GMP, streptozocin (STZ), citric acid, sodium 
citrate, 2’,7’-dichlorofluorescein diacetate (DCFH-DA) 
and cell counting kit-8 (CCK-8) were purchased from 
Sigma-Aldrich (Shanghai, China). Riboflavin, nitro-
tetrazolium blue chloride (NBT), Luria–Bertani culture 
(LB) and LB Agar culture were purchased from Sangon 
Biotech Co., Ltd. (Shanghai, China), Paraformalde-
hydesolution (PFA, 4%) was purchased from Beyotime 
Biotechnology (Shanghai, China). Hydrogen peroxide 
(30.0%), and ethanol (99.7%) were purchased from Sin-
opharm Chemical ReagentCo., Ltd (Shanghai, China). 
Syto 9/PI live/dead bacterial double stain kit was pur-
chased from Thermo Fisher Scientific (Waltham, USA). 
Monocolonies of Methicillin-resistant Staphylococcus 
aureus (MRSA, ATCC43300) and Pseudomonas aerugi-
nosa PAO1 (PAO1, CGMCC 1.12483) were purchased 
from the China Center of Industrial Culture Collection 
(Beijing, China) and BeNa Culture Collection (Suzhou, 
China), respectively. Raw 264.7 and NIH 3T3 cells were 
purchased from the American Type Culture Collection 
(Manassas, VA, USA).

Apparatus and characterization
UV/Vis absorption and fluorescence spectra measure-
ments were performed on a multimode reader Spark® 
10M (Tecan, Männedorf, Switzerland). Scanning elec-
tron microscopy (SEM) images were obtained on a 
field-emission scanning electron microscope with 
X-MaxN energy spectrum (ZEISS, Jena, Germany). 
X-ray photoelectron spectroscopy (XPS) data were 
recorded using K-Alpha using Al Kα (hv = 1486.6  eV) 
radiation (Thermo Scientific, Waltham, USA). X-ray 
diffraction (XRD) patterns were recorded from a D8 
ADVANCE (Bruker, Karlsruhe, Germany) X-ray dif-
fracto meter with Cu Kα radiation (λ = 1.5406 Å). Fou-
rier transform infrared spectra were obtained using a 
Bruker ALPHA spectrophotometer (Bruker, Karlsruhe, 
Germany). The zeta potential was measured with a 
Zetasizer Nano ZS DLS system (Malvern Instruments 
Ltd., Malvern, England).  N2 adsorption/desorption 
isotherms were obtained using an ASAP 2020 HD88/
Autosorb IQ system (Quantachrome, Florida, USA) at 
77  K. Fluorescence microscope images were recorded 
by NIS-Elements Viewer (Nikon, Tokyo, Japan). Mass 

spectrum data were collected from QE (Thermo Scien-
tific, Waltham, USA).

Preparation of Cu‑CPNs and Cu‑CPNs@EPL
We first design and synthesize copper-nanoparticles with 
oxidase or reductase-mimicking activity. To address this 
issue, nucleotides were used as metal ligands due to their 
ability to coordinate with transition metal ions through 
various interactions, such as the lone-pair electrons of 
nitrogen and oxygen atoms in nucleobases and phosphate 
groups [25]. Inspired by the fact that metal catalytic 
center served as the cofactor of some natural oxidoreduc-
tases, it has been found that copper ion could coordinate 
with GMP to form amorphous CPNs [16]. To prepare 
Cu-CPNs,  CuCl2 aqueous solution (20  mM, 5  mL) was 
added to the GMP aqueous solution (15 mM, 5 mL), and 
the mixture was placed on magnetic stirring at 37℃ for 
2  h. Afterwards, the produced wathet blue turbid solu-
tion was centrifuged for 10  min at 8500  rpm, and the 
precipitate was collected after being washed with water 
twice and re-dispersed in 10 mL of water for further use. 
To prepare Cu-CPNs@EPL, the procedure was similar to 
that of Cu-CPNs:  CuCl2 aqueous solution (20 mM, 5 mL) 
was added to 5 mL mixture solution of EPL (5 mg/mL) 
and GMP (15 mM), and the mixture was placed on mag-
netic stirring at 37 ℃ for 2 h. The obtained turbid solu-
tion was centrifuged at 8500 rpm for 10 min, and the blue 
precipitate was collected after being washed with water 
twice and re-dispersed in 10 mL of water for further use.

The SOD‑like activity of Cu‑CPNs and Cu‑CPNs@EPL 
in scavenging of  O2

•−

This method measures the scavenging efficiency of  O2
•− 

by examining the inhibition of formazan formation. A 
solution of NBT and riboflavin was illuminated with 30 
W bright light for 2  min, with varying concentrations 
of Cu-CPNs added. Under illumination, the reaction 
between riboflavin and oxygen produced  O2

•−, aided by 
photo-excited reduction of riboflavin.  O2

•− then reduced 
yellow NBT to blue formazan, but the reaction of Cu-
CPNs with  O2

•− produced  O2 and  H2O2, which inhibited 
formazan formation [32]. This indicated the SOD-mim-
icking activity of the prepared Cu-CPNs, as shown in 
Fig. 2. The intensity of the blue color of the reaction solu-
tion after photoreduction is inversely proportional to 
the SOD-like activity; a darker blue color indicates lower 
activity, while a lighter blue color indicates higher activ-
ity. Here, the SOD activity assay solutions containing 
riboflavin (20 μM), methionine (10 mM), NBT (100 μM) 
were prepared in PBS (10  mM, pH 7.4). Then different 
concentrations of Cu-CPNs and Cu-CPNs@EPL solu-
tions (0–200  μg/mL) were added to the assay solutions, 
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respectively. And the mixtures were illuminated upon 
white light for 5 min. After illumination, the absorbance 
spectra of mixtures were measured. Sample containing 
riboflavin, methionine, and NBT after illumination was 
defined as positive control.

The GPx‑like activity of Cu‑CPNs and Cu‑CPNs@EPL
The GPx-like activity was estimated through the GSH 
determination using Ellman reagent (DTNB solution) 
[18]. Typically, the GPx activity assay solutions were con-
sisted of GSH (1 mM),  H2O2 (1 mM) and 20 μg/mL Cu-
CPNs or 20 μg/mL Cu-CPNs@EPL in PBS (10 mM, pH 
7.4). After incubation at room temperature for 30  min, 
DTNB solution (1  mM) was added into the assay solu-
tions, the absorbance spectra of mixtures were measured 
in 15  min. Sample containing GSH (1  mM) and 20  μg/
mL Cu-CPNs or 20  μg/mL Cu-CPNs@EPL was defined 
as negative control without  H2O2, and sample containing 
GSH (1 mM) and  H2O2 (1 mM) was defined as negative 
control without Cu-CPNs or Cu-CPNs@EPL.

Intracellular ROS  (H2O2) depletion assay by Cu‑CPNs 
and Cu‑CPNs@EPL
To assess their cytoprotective properties, the effects of 
Cu-CPNs and Cu-CPNs@EPL on ROS damage were 
investigated, using the ROS indicator DCFH-DA for 
intracellular ROS imaging and quantification [33]. The 
intracellular ROS-scavenging ability of Cu-CPNs and 
Cu-CPNs@EPL was tested using Raw 264.7 and NIH 
3T3 cells. The cells were cultured in Dulbecco’s modified 

Eagle’s medium (DMEM) supplemented with 10% fetal 
bovine serum at 37  °C in an incubator supplied with 
an atmosphere of 5%  CO2. To investigate the intracel-
lular ROS scavenging ability, Raw 264.7 and NIH 3T3 
cells were seeded into 24-well plates at the density of 
10 ×  104 cells per well, respectively. After 24  h incuba-
tion, 10  μg/mL Cu-CPNs or Cu-CPNs@EPL was added 
to each group of wells, respectively. After incubation for 
30 min, the cells were treated with 200 μM  H2O2 and fur-
ther incubated at 37 °C for 24 h. Wells without the addi-
tion of  H2O2 and Cu-CPNs were regarded as the negative 
control, and wells without the addition of Cu-CPNs were 
regarded as the postive control. After washing the cells 
with PBS, 10 μM DCFH-DA in serum-free DMEM was 
added to the harvested cells, which were then incu-
bated at 37°C for 20 min. The cells were washed three 
times with serum-free DMEM to remove any remaining 
DCFH-DA, and DMEM was added to the cells for obser-
vation under a fluorescence microscope using an excita-
tion wavelength of 488 nm.

Cell culture and cytotoxicity assay
For visualization of cell proliferation in vitro, Raw 264.7 
and NIH 3T3 cells (5 ×  103/well) were seeded in a 48-well 
plate. The as-prepared Cu-CPNs and Cu-CPNs@EPL 
were incubated with cells for 24  h. Cell activity was 
assessed using a Live/Dead cell staining kit. Live cells 
were detected by green fluorescence produced from 
Calcein (Ex/Em = 494/517  nm), while dead cells were 

Fig. 2 Schematic representation of Cu-CPNs as a mimic of antioxidant nanozymes, (typically, SOD and GPx) in scavenging ROS
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detected by red fluorescence with Propidium iodide (PI, 
Ex/Em = 535/617  nm). The staining procedures were 
conducted according to the manufacturer’s protocol. The 
cells were observed under a fluorescence microscope 
using an excitation wavelength of 505 nm.

Futhermore, Raw 264.7 and NIH 3T3 cell lines were 
seeded in 96-well plates and incubated with varying 
concentrations of Cu-CPNs (0, 3.12, 6.25, 12.5, 25, 50, 
100 μg/mL) or Cu-CPNs@EPL (0, 3.12, 6.25, 12.5, 25, 50, 
100 μg/mL) for 24 h. After incubation, cell viability was 
assessed using the CCK-8 assay, which measures absorb-
ance intensity at 450 nm.

In vitro antibacterial experiments
Monocolonies of MRSA and PAO1 were transferred to 
LB broth and shaken at 200 rpm and 37  °C for 3 h. The 
bacteria were then diluted in LB broth to 1 ×  107  CFU/
mL. For the in  vitro antibacterial assay, four groups of 
as-prepared bacterial suspensions (200 µL, 1 ×  107 CFU/
mL). The growth-inhibition investigation was performed 
in a liquid LB medium: four groups of as-prepared bacte-
rial suspensions were treated with I) PBS, II) Cu-CPNs, 
III) EPL, IV) Cu-CPNs@EPL in 10 mM phosphate buffer, 
and incubated at 37  °C and 200  rpm/min for 6  h. Then 
the bacterial concentrations were evaluated by monitor-
ing the optical density at 600 nm  (OD600).

Morphology study and live/dead staining of bacterial cells
The SEM characterization was used to monitor the 
changes of the bacteria morphology. The bacterial sus-
pension was treated the same as in the antibacterial 
experiments.The obtained bacterial suspension was 
washed three times with PBS and collected by centrifuga-
tion at 8500 rpm for 3 min, followed by preservation in 
4% glutaraldehyde at room temperature for 0.5 h in dark-
ness. After that, the bacteria were dehydrated in a series 
of gradient concentrations (30–100%) of ethanol solu-
tions for 5 min. Finally, the bacterial samples were dried 
by nitrogen gas flow and coated with gold by sputtering 
and then observed by a SEM.

Metabolite extraction of Cu‑CPNs treated bacteria
The MRSA bacteria were treated with PBS, Cu-CPNs, 
EPL and Cu-CPNs@EPL in LB broth and shaken at 
200  rpm and 37  °C, respectively. After 6  h treatment, 
the bacteria were washed with ice-cold PBS twice and 
quenched with pre-cold methanol: water (1:1, -40  °C), 
sonicated in ice bath for 5  min, followed with freeze-
thaw for three times, and then centrifugated at 20,000 g 
for 10  min at 4  °C to obtain the supernatant and pre-
cipitation. The supernatant was dried in a freeze dryer 
for subsequent liquid chromatography-tandem mass 

spectrometry (LC-MS/MS) analysis, while the precipi-
tated protein was measured for the normalization of the 
resuspended volume.

Metabolomics data acquisition
The dried supernatant was resuspended with ice-cold 
acetonitrile: water (1: 1), vortexed for 30 s, and centrifu-
gated at 20,000 g for 10 min at 4  °C for the subsequent 
LC-MS/MS analysis. The metabolite separation was per-
formed on a Waters ACQUITY UPLC BEH Amide col-
umn (particle size, 1.7  µm; 100  mm (length) × 2.1  mm 
(i.d.)) in the negative ion mode, with the mobile phase A 
(100%  H2O + 25  mM  CH3COONH4 + 25  mM  NH4OH) 
and B (acetonitrile), with the gradient elution conditions 
set as 0–1  min, B keeps at 95%; 1–14  min, B decreases 
to 65%; 14–16 min, B decreases to 40% and then kept to 
18 min; 18.1–23 min, B keeps at 95%. The column tem-
perature was kept at 25 °C, with the flow rate at 0.3 mL/
min. In the positive ion mode, the metabolite separation 
was performed on a Thermo Hyperil Gold C18 column 
(100 × 2.1 mm, 1.9 μm), with the mobile phases consist-
ing of A: 0.1% formic acid in  H2O and B: 0.1% formic acid 
in acetonitrile. The gradient elution was set as follows: 
0–1 min, 5% B, 1–12 min, 5%-100% B, 12.1–15 min, 5% 
B. The MS data acquisition was performed by Q Exactive 
Plus (ThermoFisher Scientific, Rockford, IL) system, 
in full scan MS mode with 70,000 resolution. The spray 
voltage was set as 3.5 and 3.2 kV for positive and negative 
mode, respectively. The capillary and aux gas heater tem-
perature was set as 320 °C and 350 °C, respectively. The 
flow rate of the sheath and aux gas was set at 35 and 15 
arbitrary units, respectively.

Metabolomic data processing
The raw LC-MS/MS data were first processed by using 
Compound Discoverer 3.2 (Thermo Fisher Scientific), 
and the metabolites were annotated by the databases 
like mzCloud, mzVault, Masslist and Chemspider. 
Principal component analysis (PCA) and cluster analy-
sis of the identified metabolites were performed in R 
(version 3.6.3).

In vivo diabetic wound healing evaluation
To further investigate its in vivo efficacy, we used a dia-
betic mouse model. The model was established by admin-
istering STZ to C57BL/6 mice, a widely used method for 
studying chronic wound healing [7]. The effectiveness of 
Cu-CPNs@EPL in treating diabetic cutaneous wounds 
infected by MRSA was evaluated in a mouse model. The 
diabetic condition of mice was confirmed by the elevated 
mean blood glucose concentrations of 21 ± 2.6 mM at 
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day 0 and 29 ± 2.3 mM at day 12, which were induced by 
intraperitoneal injection of STZ for five consecutive days.

C57BL/6 male mice were purchased from Gem-
Pharmatech (Jiangsu, China). All animal protocols in 
this study were approved by the Animal Care and Use 
Committee of Laboratory Animal Center of Shenz-
hen People’s Hospital (approval number: AUP-211009-
WJG-0001-01). The male 8-week old C57 mice were 
intra-peritonelly injected with streptozotocin (50 mg/kg) 
for five consecutive days to induce the Type 1 diabetes 
model according to previous reports [1]. After 2 weeks, 
blood glucose was measured using a commercial glucom-
eter (Yuwell, China), and mice with a blood glucose level 
above 16.7  mM were considered as diabetic. The dia-
betic mice were anesthetized with 2.5% avertin solution, 
and the hair on the back were shaved off. A round full-
thickness cutaneous wound area (8  mm diameter) was 
created on the back, and then 40 µL of MRSA solution 
(2.5 ×  108 CFU/ml) was introduced onto the wound. The 
wounds were covered with Tegaderm Film and gauzeto 
obtain the infected wound model after 24 h of infection. 
Mice were then randomly assigned into four groups, with 
six mice in each group. The mice were treated with 40 µL 
PBS, Cu-CPNs, EPL, Cu-CPNs@EPL in gelatin hydrogel. 
Wound images were captured using a camera on cell-
phone (Huawei, China) at day 0, 3, 7, 14, and 21, and the 
blood glucose was measured by tail blood collection. At 
the last day of treatment, the mice were sacrificed after 
anesthesia and blood collection, and the wound tissues 
and major organs were collected and preserved in 4% 
paraformaldehyde solution for further analysis.

Histological analysis
Hematoxylin and eosin (H&E) staining, Masson’s tri-
chrome staining (MTS), and Giemsa staining were 
performed forhistological analysis according to the man-
ufacturer’s instructions, and slides were then observed 
under a microscope. The immunostaining of cytokeratin 
14 (CK14), CD31, CD86 were performed to evaluate the 
epithelialization, angiogenesis and pro-inflammatory M1 
macrophages after the treatment period, respectively. 
The immunofluorescence staining of TNF-α and IL-6 
were performed to the pro-inflammatory cytokines in the 
wound tissue.

Results
Synthesis and characterization of coordination polymer 
nanoparticles
The structural unit of Cu-CPNs is depicted in Fig. S1. 
Figure 3A shows the morphological characteristics of the 
Cu-CPNs, which were characterized using SEM. The Cu-
CPNs exhibit a coordination polymer network structure 
made of interwoven irregular nanoparticles with a diam-
eter of 80–100 nm. The zeta potential of the Cu-CPNs 
was measured to be -5.5 eV. EPL is an-FDA approved 
cationic antimicrobial polypeptide with high biocompat-
ibility [34, 35], and it was used to improve the antibacte-
rial properties of the Cu-CPNs. During the self-assembly 
process, EPL was added to the Cu-CPNs to produce the 
Cu-CPNs@EPL complex via “one-pot” electrostatic 
assembly, and the SEM image of the Cu-CPNs@EPL was 
displayed in Fig.  2B. The zeta potential measurements 
(Fig. 3C) and SEM analysis confirmed the production of 
the Cu-CPNs@EPL complex, which showed strong elec-
tropositivity and the ability to interact with bacteria for 

Fig. 3 A representative TEM image of A Cu-CPNs and B Cu-CPNs@EPL; C Zeta potential of Cu-CPNs, EPL, and Cu-CPNs@EPL; D FTIR spectra of GMP, 
Cu-CPNs, EPL, and Cu-CPNs@EPL; XPS fully scanned spectra of E Cu-CPNs and F Cu-CPNs@EPL; Cu 2P XPS peaks of G Cu-CPNs and H Cu-CPNs@EPL
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potent antibacterial effects. The FTIR spectra of the Cu-
CPNs and Cu-CPNs@EPL were similar to those of GMP 
and EPL, respectively, with no evident shift in the FTIR 
peak of GMP (Fig. 3D). The XRD and XPS analyses were 
used to investigate the physical and chemical properties 
of the Cu-CPNs and Cu-CPNs@EPL. The XPS full spec-
trum and core peak were used to determine the element 
species and copper valence state on the surface of the 
Cu-CPNs and Cu-CPNs@EPL. Figure 3E and F show that 
Cu, N, O, P, and C elements coexisted in the Cu-CPNs 
and Cu-CPNs@EPL, and the Cu 2p signal in Fig. 3G and 
H verified the coexistence of Cu(II) and Cu(I) states in 
the Cu-CPNs and Cu-CPNs@EPL [36]. The XRD spec-
tra indicated an amorphous state of the Cu-CPNs and 
Cu-CPNs@EPL (Fig. S2). The  N2 adsorption-desorption 
results in Fig. S3 showed the porous property of the Cu-
CPNs, with a surface area of 3.49  m2/g and an average 
pore diameter of 10.14 nm, and the porous Cu-CPNs@
EPL had a surface area of 16.26  m2/g and an average pore 
diameter of 16.77 nm.

SOD and GPx mimetic activity of Cu‑CPNs and Cu‑CPNs@
EPL
The reduction in UV-vis absorbance peak at 560  nm 
after the reaction was observed for both Cu-CPNs and 
Cu-CPNs@EPL, showing their effective SOD-mimicking 
activity. The SOD-mimicking activity of Cu-CPNs and 

Cu-CPNs@EPL was measured by the riboflavin-photore-
duction of NBT method, which is based on the inhibition 
of formazan formation. The UV-vis absorbance peak at 
560  nm (indicator of formazan) decreased in a concen-
tration-dependent manner for Cu-CPNs (Fig.  4B), indi-
cating its effective SOD-mimicking activity. Similarly, the 
decreased absorbance peak was also observed for Cu-
CPNs@EPL (Fig. 4C).

Furthermore, the GPx-mimicking activity of Cu-CPNs 
was estimated through the GSH/ oxidized glutathione 
(GSSG) system by using Ellman reagent (DTNB solu-
tion), in which GSH can react with DTNB to produce a 
characteristic absorption at 412 nm. As shown in Fig. 4D, 
there was still characteristic absorbance peak at 412 nm 
when  H2O2 or Cu-CPNs was separately incubated with 
the assay solution containing GSH and DTNB. However, 
the typical absorbance peak at 412 nm disappeared when 
the mixture of  H2O2 and Cu-CPNs with assay solution 
was oxidized to GSSG (Fig.  4D). The similar result was 
obtained for Cu-CPNs@EPL as well (Fig. 4E). The results 
shown in the volcano plot in Fig. 4F, revealed an increase 
in GSSG after Cu-CPNs treatment, further validating its 
GPx-mimicking activity.

The cytotoxicity of Cu-CPNs and Cu-CPNs@EPL was 
evaluated using CCk-8 and Live/Dead staining assays 
on Raw 264.7 and NIH 3T3 cells. The results from the 
CCk-8 assay (Fig. S4A and B) showed that Cu-CPNs and 
Cu-CPNs@EPL at concentrations of 0–50 μg/mL did not 

Fig. 4 A Schematic representation of Cu-CPNs as the antioxidant nanozyme (typically, SOD and GPx) in ROS scavenging; the SOD-mimicking 
activity of B Cu-CPNs and C Cu-CPNs@EPL in scavenging efficiencies of  O2

•− using NBT as the indicator; the GPx-mimicking activity of D Cu-CPNs 
and E Cu-CPNs@EPL; F The volcano plot of the metabolic profiling change in comparison of Cu-CPNs and PBS treated metabolites, the metabolites 
were extracted from mouse liver tissue
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significantly inhibit cell growth. The Live/Dead staining 
assay (Fig. S4C and D) also showed no significant cell 
death upon treatment with 25 μg/mL of Cu-CPNs or Cu-
CPNs@EPL. The DCFH-DA reacts with cellular ROS to 
produce a green fluorescent DCF. Raw 264.7 cells showed 
low intracellular ROS levels that were barely detectable 
by fluorescence microscopy, as shown in Fig. 5A and B. 
The ROS level increased dramatically in Raw 264.7 cells 
after treatment with 200 μM  H2O2 (green fluorescent sig-
nal). However, when the cells were pretreated with 20 μg/
mL of Cu-CPNs or Cu-CPNs@EPL, the intracellular ROS 
level significantly decreased, demonstrating the in  vitro 
ROS-scavenging ability of Cu-CPNs or Cu-CPNs@EPL. 
The ROS-scavenging ability of Cu-CPNs was also tested 
in another cell line, mouse embryonic fibroblast cell NIH 
3T3, and was found to be effective, as shown in Fig. S5.

In vitro antibacterial properties
The results in Fig.  5A and B show that the Cu-CPNs@
EPL, with its strong electropositive property, effectively 
adheres to the negatively charged bacterial membrane 
and demonstrates broad-spectrum antibacterial effi-
ciency against MRSA and PAO1 when incubated at a 
concentration of 2 ×  107  CFU/mL. Results showed that 
EPL and Cu-CPNs@EPL had superior antibacterial abil-
ity compared to PBS and plain Cu-CPNs. Cu-CPNs@EPL 
at a concentration of 25 μg/mL was found to inhibit the 
growth of MRSA and PAO1 by 99% (Fig. 6A and B). The 
bacterial morphology was further analyzed using SEM, 
which showed surface roughness and cellular deforma-
tion in bacteria treated with EPL or Cu-CPNs@EPL 

(Fig. 6C and D), indicating its strong antibacterial activ-
ity. The bacterial colony assay confirmed these results 
with almost no visible colonies observed in the EPL or 
Cu-CPNs@EPL groups (Fig. 6E and F).

The antibacterial efficacy of Cu-CPNs@EPL was eval-
uated using SYTO 9/PI kit. The SYTO 9 stain was used 
to stain both live and dead Gram-positive and Gram-
negative bacteria with green fluorescence, while dead 
cells with damaged membranes were stained with red 
fluorescence dye PI. As seen in Fig. 7 and Fig. S6, while 
both MRSA and PAO1 remained alive in the PBS and Cu-
CPNs groups, most MRSA and PAO1 were dead in the 
EPL and Cu-CPNs@EPL groups.

Bacterial metabolomics analysis
The treatment with Cu-CPNs, Cu-CPNs@EPL, and EPL 
resulted in a significant shift in the bacterial metabolic 
profile, with the largest change seen in the Cu-CPNs@
EPL group (Fig.  8A). This change was reflected in the 
number of significant difference ions. A total of 15,570 
and 13,131 ions were detected in the positive and nega-
tive ion modes after various treatments, respectively. 
The Cu-CPNs, EPL, and Cu-CPNs@EPL-treated groups 
showed 940, 1,999, and 1,744 significant difference ions 
(p < 0.01, |Fold change|> 1.5), respectively, compared to 
the PBS group in the positive ion mode, as well as 7,152, 
447, and 2,656 significant difference ions (p < 0.01, |Fold 
change|> 1.5), respectively, compared to the PBS group 
in the negative ion mode (Fig. 8B and C). A total of 202 
metabolites were identified, and it was observed that the 
methionine metabolism, purine metabolism, pyrimidine 

Fig. 5 Characteristic picture of ROS staining (green fluorescence) in Raw 264.7 cell under A Cu-CPNs and B Cu-CPNs@EPL treatment (Scale bar: 100 
μm)
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Fig. 6 The viability of A MRSA and B PAO1 after treatment with PBS, 25 μg/mL Cu-CPNs, 25 μg/mL EPL, and 25 μg/mL Cu-CPNs@EPL; significant 
difference (Bars represent SD, *P < 0.05, ***P < 0.01, with four replicates in each group) compared with PBS group from the collected data; SEM 
images of C MRSA and D PAO1 after exposure to PBS, Cu-CPNs, EPL, and Cu-CPNs@EPL; and bacterial colony photographs of E MRSA and F PAO1 
after corresponding treatment

Fig. 7 Living/dead bacterium staining of MRSA by SYTO 9/PI after exposure to PBS, Cu-CPNs, EPL, and Cu-CPNs@EPL, respectively. (green 
fluorescence: SYTO 9 staining, representing live and dead bacteria; red fluorescence: PI staining, representing dead bacteria, scale bar: 100 μm)
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metabolism, and methylhistidine metabolism pathways 
were highly affected after Cu-CPNs@EPL treatment, as 
shown in Fig.  8D. In addition, the enrichment analysis 
of the Cu-CPNs-treated group in Fig. S7A indicated that 
Cu-CPNs treatment mainly affected histidine metabo-
lism, nitrogen metabolism, D-glutamine and D-gluamate 
metabolism. On the other hand, EPL treatment mainly 
affected purine metabolism, arginine biosynthesis, 
cysteine and methionine metabolism, and pyrimidine 
metabolism, as shown in Fig. S7B.

These metabolites showed a decreasing trend in these 
pathways (Fig. 8E). Methionine is an essential amino acid 
and is also a key component of S-adenosyl methionine 
(SAM) [37], a cellular carrier of methyl groups involved 
in cell growth, repair, and maintenance of the cell mem-
brane’s phospholipid layer. Interestingly, SAM was pre-
sented as 0.26 fold change after the Cu-CPNs@EPL 

treatment (p = 0.037), indicating that the bacteria suffered 
from the lack of methylation, which affected the repro-
duction rate of bacteria. Besides, we also observed other 
important pathways that affect bacterial reproduction, 
i.e., purine and pyrimidine metabolisms, which are closely 
related to DNA replication and serve as main energy car-
riers, were down-regulated in the Cu-CPNs@EPL treated 
group. Furthermore, the subunits of nucleic acids and 
precursors for the synthesis of nucleotide cofactors, such 
as nicotinamide adenine dinucleotide (NAD) and SAM 
[38, 39], were also reduced in Cu-CPNs@EPL group.

In vivo MRSA‑infected wound healing evaluation
The efficacy of Cu-CPNs@EPL on wound healing and 
antibacterial activity was evaluated on a diabetic mouse 
model infected with MRSA. The results showed that the 

(A)

(C) (D)

(B) (E)

Fig. 8 The metabolic analysis of the bacteria in different treatment groups. A PCA of PBS, Cu-CPNs, EPL, and Cu-CPNs@EPL treated groups 
in the positive ion mode; B The illustrated volcano plot in comparison of PBS and Cu-CPNs@EPL treatment; C The total detected features 
and the significant difference features in different groups; D Enrichment analysis of the control (PBS) group in comparison with Cu-CPNs@
EPL-treated group; E Heatmap of the significant different metabolites of the bacteria in different treatment groups
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wounds of the mice treated with PBS, Cu-CPNs, and 
EPL exhibited significant inflammation, but the treat-
ment with Cu-CPNs@EPL greatly accelerated wound 
healing (Fig. 9B). After 12 days of treatment, the wound 
tissues were harvested for analysis. The results of both 
H&E staining indicated better wound healing in the 
Cu-CPNs@EPL-treated group compared to the control 
groups. The collagen fiber staining with MTS in Fig. 9C 
showed that collagen deposition (blue staining) was obvi-
ously increased in the Cu-CPNs@EPL-treated group for 
infected wounds, indicating that the wounds were heal-
ing and closed. The Giemsa staining showed a decrease 
in the number of bacteria in the wound tissue of the EPL 
and Cu-CPNs@EPL group, indicating the effectiveness of 
Cu-CPNs@EPL in treating infected wounds.

The immunohistochemistry staining of CD31 and 
CD86 was performed to evaluate angiogenesis and pro-
inflammatory M1 macrophages, respectively. Results 

showed that the expression of CD31 in the Cu-CPNs@
EPL group was higher than in the control and EPL groups 
at day 12 (Fig.  9D), indicating an accelerating effect on 
angiogenesis due to the presence of copper ions [40, 41]. 
The expression of CD86 in Cu-CPNs@EPL group was 
significantly lower than that in control group, indicat-
ing the anti-inflammatory effect of Cu-CPNs@EPL in 
chronic wound healing. In addition, the renascent epithe-
lial thickness was stained by CK 14 antibody in different 
groups for quantitative assessments, and the normal epi-
thelial tissues were also harvested as the negative control 
(Fig.  9E). The epithelial thickness was also found to be 
thinner in the EPL and Cu-CPNs@EPL groups compared 
to the PBS group, but similar to normal tissue in the 
Cu-CPNs@EPL group, indicating that the Cu-CPNs@
EPL could accelerate wound recovery. Furthermore, the 
expression of pro-inflammatory cytokines TNF-α and 
IL-6 was reduced in the Cu-CPNs@EPL group (Fig. 8E), 

Fig. 9 A Schematic diagram of in vivo anti-infective efficiency of different treatment on the diabetic mice wound infected by MRSA. B 
Representative pictures of MRSA-infected full-thickness wounds on C57BL/6 mice with different treatments on days 0, 1, 3, 6, 9, and 12. C 
Representative histopathological observation of H&E staining, MTS, and Giemsa staining of dermal wound paraffin section collected on day 12. 
D Immunohistochemical staining of CD31 and CD86 of the dermal wound paraffin section collected on day 12. E Immunofluorescence staining 
of CK14 (red), IL-6 (green), TNF-α (green) and cell nucleus (blue) of dermal wound paraffin section collected on day 12
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indicating M1-to-M2 polarization of macrophages, 
which is beneficial for wound closure. The H&E staining 
of major organs also showed excellent histocompatibility 
(Fig. S8) and in vivo biosafety of Cu-CPNs@EPL.

Discussion
Diabetic ulceration is a common complication that can 
lead to chronic wound infections, hindering the healing 
process and negatively impactthe quality of life. To treat 
infected wounds, various therapeutic modalities includ-
ing peptides, therapeutic antimicrobials, and stem cell 
therapy have been developed [7, 42]. In addition, a vari-
ety of antibacterial nanomaterials such as gold nanopar-
ticles, copper oxide, and two-dimensional nanohybrid, 
nanofibrous dressing, and hydrogels have emerged as 
alternatives to antibiotics [8, 43–47]. However, these 
nanomaterials do not always effectively control chronic 
wound infections due to their limited functions and 
potential cytocompatibility issues, which can impact 
their biosafety and applications in treating diabetes-
related chronic wound infections. In the present study, 
the antioxidant nanozyme was designed using GMP as 
the coordination scaffold and copper ion as the center of 
CPNs to reduce ROS levels and enhance wound healing. 
Copper ions play a crucial role in cellular redox reactions 
and are vital to keep in the Cu(I) valence state for optimal 
biomedical use. Copper-based nanomaterials with Cu(I) 
state component are essential for scavenging endogenous 
ROS and have a strong impact on wound healing through 
contributions to angiogenesis and collagen deposition. 
Nucleotides are regarded as metal ligands due to their 
ability to coordinate with transition metal ions. The non-
covalent interactions between GMP and copper ions 
induce the formation of responsive and amorphous Cu-
CPNs. Previous studies have suggested that the nitrogen 
and oxygen atoms of nucleobases and phosphate groups 
in GMP, owing to the presence of lone pair electrons, can 
act as potential binding sites for metal ions [48, 49]. The 
antioxidant properties of GMP allowed the Cu-CPNs 
to retain the Cu(I) valence state, resulting in reductive 
activity and the ability to mimic antioxidant enzymes. To 
enhance the anti-infection capacity, an antibacterial com-
ponent, EPL, was integrated to the Cu-CPNs to produce 
the Cu-CPNs@EPL complex through a one-step self-
assembly process, which showed strong electropositivity 
and the ability to interact with bacteria for potent anti-
bacterial effects.

Cu-CPNs and Cu-CPNs@EPL showed the effective 
SOD-mimicking activity according to the measure-
ment of the  O2

•− scavenging efficiency ininhibiting the 
formazan formation. Using methionine as this elec-
tron donor, riboflavin reacts with oxygen to produce 
 O2

•− in the presence of oxygen and light, allowing the 

photo-excited reduction of riboflavin. The  O2
•− reduces 

the slightly yellow NBT to blue formazan, and SOD 
inhibits the formation of blue formazan by catalysing 
the  O2

•− disproportionation reaction to produce  O2 with 
 H2O2. The Cu-CPNs and Cu-CPNs@EPL were also con-
firmed to exhibit excellent GPx activity in scavenging 
 H2O2 through enzymatic substrate reaction validation. 
Moreover, to confirm the GPx-mimicking activity of Cu-
CPNs under physiological conditions, the metabolites 
extracted from mouse liver tissue were treated with Cu-
CPNs and PBS, respectively. The results demonstrate the 
effective antioxidase-mimicking activity and ROS-scav-
enging abilities of Cu-CPNs and Cu-CPNs@EPL.

To evaluate the antibacterial efficacy of Cu-CPNs@
EPL, the material was tested against Gram-positive 
MRSA and Gram-negative PAO1 bacteria. The cati-
onic charge of EPL and Cu-CPNs@EPL caused them to 
strongly adhere to the negatively charged bacterial cell 
membranes, breaking the transmembrane potential and 
osmotic balance and disrupting membrane fusion, lead-
ing to bacteria clustering. These results suggest that Cu-
CPNs@EPL is a potent agent that effectively kills bacteria 
with serious damage to the cell membrane. The resulting 
Cu-CPNs@EPL showed high inhibition efficiency against 
MRSA and PAO1.

To uncover the mechanisms of action of the prepared 
nanomaterials against bacteria, a metabolomic analy-
sis was performed on MRSA, bacterial metabolomics 
analysis indicated that the Cu-CPNs@EPL primarily 
impacted the integrity of the bacterial cell membrane, 
causing death of bacteria. Furthermore, these disturbed 
metabolic findings indicated that the Cu-CPNs@EPL 
might mainly impact the integrity of bacterial mem-
brane, inhibit the synthesis of nucleic acids, both of 
which could induce subsequent bacterial death. Our 
study showed that Cu-CPNs@EPL has both antioxidant 
nanozyme properties and antibacterial properties, as 
demonstrated by its ability to inhibit bacterial growth 
in vitro.

In an animal study with a MRSA infected diabetic 
wound model, the Cu-CPNs@EPL treatment effectively 
eradicated MRSA infection, relieved oxidative stress, and 
induced angiogenesis, creating a favorable microenviron-
ment for inflammation reduction, cell proliferation, vas-
cularization, tissue formation at the wound site. Overall, 
Cu-CPNs@EPL showed a promising therapeutic effect 
for treating MRSA-infected diabetic cutaneous wounds 
with good biosafety.

Conclusion
In this study, we developed a type of Cu-CPNs nanozyme 
with excellent GPx and SOD-like activity that mimics an 
antioxidant defense system. To enhance the antibacterial 
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and antioxidant properties, the nanozyme was combined 
with a typical cationic and antibacterial EPL polymer 
through a one-pot self-assembly process. The result-
ing Cu-CPNs@EPL showed potent antibacterial activity 
against MRSA and PAO1, as well as strong ROS scaveng-
ing ability. The efficacy of Cu-CPNs@EPL was evaluated 
in a diabetic mouse model with MRSA-infected skin 
wounds and showed satisfactory antibacterial and anti-
inflammatory performance, along with excellent biocom-
patibility. These results suggest that Cu-CPNs@EPL is a 
promising multifunctional antioxidant nanozyme-based 
therapeutic for the treatment of drug-resistant bacteria-
infected wounds.
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