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Abstract
Background There is great interest to engineer in vitro models that allow the study of complex biological processes 
of the microvasculature with high spatiotemporal resolution. Microfluidic systems are currently used to engineer 
microvasculature in vitro, which consists of perfusable microvascular networks (MVNs). These are formed through 
spontaneous vasculogenesis and exhibit the closest resemblance to physiological microvasculature. Unfortunately, 
under standard culture conditions and in the absence of co-culture with auxiliary cells as well as protease inhibitors, 
pure MVNs suffer from a short-lived stability.

Methods Herein, we introduce a strategy for stabilization of MVNs through macromolecular crowding (MMC) 
based on a previously established mixture of Ficoll macromolecules. The biophysical principle of MMC is based on 
macromolecules occupying space, thus increasing the effective concentration of other components and thereby 
accelerating various biological processes, such as extracellular matrix deposition. We thus hypothesized that MMC will 
promote the accumulation of vascular ECM (basement membrane) components and lead to a stabilization of MVN 
with improved functionality.

Results MMC promoted the enrichment of cellular junctions and basement membrane components, while reducing 
cellular contractility. The resulting advantageous balance of adhesive forces over cellular tension resulted in a 
significant stabilization of MVNs over time, as well as improved vascular barrier function, closely resembling that of in 
vivo microvasculature.

Conclusion Application of MMC to MVNs in microfluidic devices provides a reliable, flexible and versatile approach 
to stabilize engineered microvessels under simulated physiological conditions.

Keywords Microvascular networks, Microfluidic device, Macromolecular crowding, Vessel retraction, Basement 
membrane, Vascular barrier function
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Background
Microvessels act as the ultimate barrier between tissue 
and blood and regulate the exchange of molecules and 
cells [1]. Endothelial cells, which form the inner lining 
of microvessels, create this semipermeable barrier via a 
combination of cellular junctions, their glycocalyx, and 
the basement membrane that consists of vessel-specific 
extracellular matrix (ECM) [2]. Embedded within the 
basement membrane and in direct contact with endo-
thelial cells are pericytes, which are crucial for microves-
sel maturation, maintenance, as well as proper function. 
Pericytes have also been reported to be in essence mes-
enchymal stem cells (MSCs) [1, 3].

The microvascular system and especially endothelial 
cells play a major role in inflammation, act as an endo-
crine organ and tightly regulate blood coagulation [1]. 
Hence, the microvasculature plays a pivotal role in many 
physiological and pathophysiological processes including 
cancer and cardiovascular diseases [1, 4] and is an active 
area of biomedical research. Traditionally, processes 
involving microvasculature have been investigated either 
in vivo or in 2-dimensional (2D) in vitro models. Unfortu-
nately, animal models are often limited by low resolution 
during real-time monitoring and interspecies differences, 
which can hamper clinical translation [5]. On the other 
hand, 2D monolayer systems lack the 3D context relevant 
for proper function of blood vessels [6].

There is thus a recognized need to engineer functional 
microvascular networks (MVNs) in vitro that are able to 
recapitulate physiological properties as closely as possible 
[7]. Previous MVN microfabrication approaches include 
3D printing of precisely organized channel structures [8], 
channel-molded hydrogels [9] and microfluidic channels 
that could be seeded with an endothelial monolayer [10]. 
In addition, approaches to directly “seed” microvascula-
ture by cell sheet stacking or 3D bio-printing of cells were 
also employed [11]. These approaches have enabled the 
study of microvessel-like structures and their properties 
in vitro, such as vascular permeability [12] and response 
to shear stress/fluid flow [13, 14], VEGF [15], cyclic 
AMP [16] and mechanical stimulation [17]. However, 
these microvessel-like structures possess a limited abil-
ity to reconstitute the characteristic features of the in vivo 
endothelium, such as physiologically representative vas-
cular barrier functions [18, 19].

Hence, recent efforts have focused on engineering 
perfusable MVNs with in vivo-like cell morphology 
and physiologically representative functions [19–25]. 
Microfluidic-based approaches present great promise 
for this purpose, as they are easy to fabricate, and their 
design can be adjusted specifically for a desired applica-
tion and to study the process of interest in a controlled 
environment in detail and over time [19, 21–24]. In par-
ticular, by using a parallel multichannel set-up within 

microfluidic devices, endothelial cells can be seeded with 
various other cell types in biologically derived hydrogels 
(e.g. fibrin) into the center channel [22]. The hydrogel 
region is flanked by channels of culture medium, sepa-
rated from the hydrogel channels by trapezoidal post 
arrays, which provide enough surface tension to fill 
the inner chamber with the hydrogel [19]. The spaces 
between the trapezoidal posts allow for a direct hydrogel-
medium interface, critical for gas exchange and delivery 
of nutrients during the culture period. The endothelial 
cells within the hydrogel then spontaneously undergo 
physiological morphogenesis (vasculogenesis), resulting 
in the de novo formation of interconnected MVNs with 
patent lumina and openings towards the media channels 
(Fig. 1A) [23]. Importantly, formation of MVNs via vas-
culogenesis appears to be a key requirement, as endothe-
lial cells, after undergoing this process, produce MVNs 
with improved barrier-properties, interstitial flow regula-
tion, in vivo-like cell morphology and thus more physi-
ologically representative functions [20, 26, 27]. Vessel 
parameters such as diameter, branching, as well as stabil-
ity (to a certain degree) can be regulated by hydrogel con-
centration, endothelial cell seeding density, co-seeding 
with perivascular cells (e.g. pericytes/MSCs), interstitial 
flow as well as signaling factors and importantly pro-
tease inhibitors [22, 27–29]. However, MVNs cultured 
under standard culture conditions in microfluidic devices 
exhibit a very limited stability. As a result, the utilization 
of these MVNs for long-term biological investigations is 
greatly restricted. As shown recently by some of us, the 
stability of MVN is particularly dependent on the batch 
of human umbilical cord endothelial cells (HUVECs) 
acquired [30]. This can be further improved when these 
cells are immortalized [30]. However, since the major-
ity of HUVECs form MVNs with a limited stability, this 
remains a major hurdle for most investigations.

Longer lasting stabilization of perfusable MVNs could 
be achieved by direct [31] or indirect co-culture of MVNs 
with stromal cells such as fibroblasts, where MVN stabi-
lization occurs through fibroblast-derived paracrine and 
juxtacrine factors [20, 22, 32]. Indeed, studies involving 
MVNs stabilized by fibroblast paracrine factors were 
reported to allow for continuous experiments for 1 [20, 
22, 24, 26] to 2 weeks [32]. However, this approach leads 
to a higher complexity of the system, thus confounding 
data interpretation, and resulting in a higher variability 
due to batch-to-batch differences of the cells utilized. 
Furthermore, the overproportioned presence of fibro-
blasts [33] can unbalance more delicate biological sys-
tems, such as engineered stem cell niches, or lead to 
non-physiologically representative responses. It is also 
noteworthy that all of the above approaches still require 
the utilization of protease inhibitors, to minimize pre-
mature destabilization of MVNs [22]. These agents can 
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interfere with cellular processes, contributing to non-
physiological responses [34, 35].

In view of these limitations, we proposed to introduce 
macromolecular crowding (MMC) to human MVNs 
in microfluidic devices in order to stabilize MVNs and 
improve their functionality without the requirement for 
the over-proportional presence of auxiliary cells (fibro-
blasts) and protease inhibitors. MMC occurs naturally 
in the physiologically “crowded” in vivo environment of 
tissues. The biophysical principle of MMC is based on 
macromolecules occupying space, thereby increasing 
the effective concentration of other components, as well 
as the thermodynamic activity of the system [36]. As a 
result, protein folding, intermolecular interactions, as 
well as enzyme and reaction kinetics are enhanced. MMC 
has been applied to cell culture by introducing carbohy-
drate-based macromolecules at a physiologically relevant 
fractional volume occupancy (FVO) into culture medium 
[3, 37–44]. Applied MMC accelerated various biological 
processes including ECM assembly in vitro. While these 
studies have been reported in 2-dimensional (2D) cul-
tures [40, 45–48], a recent study on crowding of spheroid 
cultures has shown that MMC also enhanced ECM depo-
sition in 3-dimensional (3D) cultures [41, 49]. We thus 
hypothesized that MMC will facilitate the formation of a 
robust vascular basement membrane, thereby stabilizing 
human MVNs and improving their functionality in vitro.

Materials and methods
Device fabrication
Microfluidic devices were fabricated by replica mold-
ing on a silicon wafer and soft lithography using PDMS 
(polydimethylsiloxane), as described previously [22]. 
Briefly, a 100  μm layer of SU-8 3050 negative photo-
resist (Kayaku Advanced Materials, Massachusetts, 
USA) primer was spin-coated on a silicon wafer before 
exposed to a photomask exhibiting the negative pattern 
of the channel structures designed by computer aided 
designs (CAD) for photolithography. The SU8 was then 
exposed to UV light (set as 20 mW/cm2 at 365  nm) for 
45 s, followed by the pattern developing. PDMS and cur-
ing agent (Sylgard 184, Dow Corning, Michigan, USA) 
were mixed at 10:1 (W/W) ratio and cast onto the SU8 
master. After thermal curation at 60˚C for two hours, a 
positive replica-molded pattern on PDMS was separated 
from the wafer. Patterned PDMS was cut into individual 
devices and inlet and outlet ports were punched using 1 
and 3 mm biopsy punchers. Next, the devices and glass 
slides were cleaned with 100% ethanol, water, and dried 
with a nitrogen gas air gun before being treated with 
oxygen plasma (Harrick Plasma, New York, USA) for 
45  s to create covalent bonding between the glass slide 
and the PDMS device. Right after the PDMS pieces and 
glass slides were assembled, the channels were coated 

with 1 mg/ml of poly-L-lysine (PLL) (Molecular weight: 
30,000–70,000) (Meryer, Shanghai, China, Cat#. 25988-
63-0) dissolved in water for at least 20 min before auto-
claving. PLL coating increased the hydrophilicity of the 
device enabling easy loading of the hydrogel.

Device design
A previously established microfluidic design with a 3 
channels system as displayed in Fig.  1A was utilized 
[22]. The channels have a height of 100  μm and length 
of 14.5  mm with triangular posts separating the cen-
ter hydrogel channel from the adjacent media channels. 
The posts are 100  μm apart. The width of the hydrogel 
channel and media channels is 1300  μm and 500  μm, 
respectively. Media inlet ports and cell inlet ports have a 
diameter of 1000 μm and 500 μm, respectively.

Cell culture
Primary HUVECs (pooled) (ATCC, Cat#. PCS-100-013) 
and GFP-expressing HUVECs (TTFLUOR HUVECs) 
(Innport, Primera Planta, Spain Cat#. P20201) were cul-
tured in Endothelial Growth Medium (EGM-2) (Lonza, 
Walkersville, MD, USA, Cat#. CC3162). Human bone 
marrow derived MSCs (Milipore, Temecula, CA, USA, 
Cat#. SCC034) were cultured in Dulbecco’s Modified 
Eagle Medium (DMEM) (Gibco, Life Technologies, 
Grand Island, NY, USA, Cat#. 10567-014) supplemented 
with 10% fetal bovine serum (FBS) (Gibco, Life Tech-
nologies, Cat#. 16,000,044), as well as 1% of 100 U/mL 
penicillin and 100 µg/mL streptomycin (P/S) (Gibco, Life 
Technologies, Cat#. 15140-122). Immortalized Human 
Bone Marrow Mesenchymal Cells – hTERT (hTERT-
MSCs) (Applied Biological Materials (abm) Inc., Rich-
mond, BC, Canada, Cat#. T0523) were cultured in 
Roswell Park Memorial Institute (RPMI) 1640 Medium 
(Gibco, Life technologies, Cat#. 11,875,093) with 10% 
of fetal bovine serum (FBS) (Hyclone, Cytiva, Marlbor-
ough, MA, USA, Cat#. SH30084.03), 1% of 100 U/mL 
penicillin and 100  µg/mL streptomycin (P/S) (Gibco, 
Life Technologies, Cat#. 15140-122) and GlutaMAX™ 
Supplement (Gibco, Life technologies, Cat#. 35,050,061). 
hTERT-MSCs were cultured with HUVECs for perme-
ability assay using Texas Red™ BSA. HUVECs and MSCs 
were cultured in tissue culture polystyrene flasks coated 
with 0.1% gelatin (Sigma-Aldrich, Saint Louis, MO, USA, 
Cat#. G1890) at 37  °C under 5% CO2. At ~ 80% conflu-
ency, all cells were trypsinized using TrypLE™ Express 
(Gibco, Life Technologies, Cat#. 12605-010) for 3  min 
at 37  °C and resuspended in EGM-2, DMEM with 10% 
FBS and 1% P/S and RPMI with 10% FBS and 1% P/S, 
respectively.
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PDMS device seeding
Fibrinogen powder (Sigma-Aldrich, Saint Louis, USA, 
Cat#. F8630-5G) was dissolved in phosphate buffered 
saline (PBS) at 15  mg/ml freshly for each experiment. 
Thrombin solution (Sigma-Aldrich, Saint Louis, USA, 
Cat#. T4648) was prepared in 1% (w/v) bovine serum 
albumin (BSA, Sigma-Aldrich, Cat#. A7906) in PBS 
solution at 100 U/ml, and stored in aliquots at -20  °C. 
HUVECs and MSCs (40:1) were resuspended in EGM-2 
containing 6 U/ml of thrombin, the cell solution was 
mixed with fibrinogen solution at 1:1 ratio to have final 
concentrations at 7.5  mg/ml for fibrinogen, 3 U/ml for 
thrombin, 6 × 106 cells/ml HUVECs and 1.5 × 105 cells/
ml for MSCs or hTERT MSCs, respectively. The mixture 
was then quickly introduced into the center channel and 
the device was placed at 37  °C in a humidified incuba-
tor for 15 min to allow the fibrinogen to be polymerized 
into a fibrin hydrogel by thrombin. Next, EGM-2 was 
added into the medium channels. Medium was changed 
on a daily basis and MMC (25 mg/ml Ficoll 400 (Cytiva, 
Marlborough, MA, USA, Cat#. 17-0300-50) and 37.5 mg/
ml of Ficoll 70 (Cytiva, Marlborough, MA, USA, Cat#. 
17-0210-10)) containing medium was optionally intro-
duced from day 1 onwards. The optimal concentration 
of the Ficoll mixture was optimized previously, exhibits 
a calculated fractional volume occupancy (FVO) of 17% 
and was demonstrated to enhance ECM assembly and 
deposition [39].

For permeability test, one of the medium channels 
was seeded with monolayer of endothelial cells on day 2 
of culture. In brief, after gel formation on day 0 of cul-
ture, both medium channels were coated with 50  µg/
ml of fibronectin solution (from bovine plasma) (Sigma 
Aldrich, Saint Louis, USA, Cat#. F1141-5MG) in PBS 
for 1 h at 37 °C before washing with EGM-2. On day 2 of 
culture, all media were removed from ports and 50 µl of 
the respective medium (EGM-2 or EGM-2 supplemented 
with MMC) was introduced to inlet ports for both chan-
nels until inlet and outlet ports reached equilibrium. 
Additional 20 µl of the respective medium was added into 
the inlet port at the medium channel to be seeded with 
endothelial cells before 10 µl of endothelial cells (10 × 106 
cells/ml) resuspended in their respective medium were 
injected into that medium channel through its inlet port. 
After 2 min, the same procedure was repeated at the out-
let port. The additional medium created hydrostatic pres-
sure to facilitate the attachment of endothelial cells to 
the gel interface. The cells were allowed to attach for 3 h 
before washing with their respective medium to remove 
non-attached cells.

For 2D cell layer cultures, HUVECs and MSCs were 
seeded at 7 × 103 cells/ml per well into 48-well plates in 
their respective medium. Medium optionally supple-
mented with MMC was added on the next day.

Immunostaining
After 4 days of culture, the devices were washed with 
PBS and fixed with 4% paraformaldehyde (PFA) (Thermo 
Scientific, Cat#. 5735) in PBS through the medium chan-
nels for 15  min, then permeabilized with 0.25% Triton 
X-100 in PBS for 10  min. After blocking with 5% BSA 
for 1  h, samples were incubated with primary antibod-
ies (see Table 1) in PBS containing 0.5% BSA for 16 h at 
4 °C. Samples were then washed three times with PBS for 
5 min each, before being incubated with secondary anti-
bodies (see Table 1) for at least 3 h at room temperature. 
For staining of 2D cell layers, cells were seeded on day 0 
and changed into control or crowded medium on day 1. 
On day 2, 4% of PFA was used for fixation before phal-
loidin and DAPI (see Table  1) was added followed by a 
1  h incubation at room temperature. The samples were 
washed and maintained in PBS.

Microcopy
For confocal imaging, images were acquired with a Nikon 
C2 + point scanning confocal microscope (Nikon, Tokyo, 
Japan) at 10X, 20X and 60X magnification. Images of 
collagen IV, laminin, VE-cadherin and β-catenin are for 
qualitative analysis only, as exposure time was adjusted 
for each image to ensure optimal visibility. MVNs formed 
by GFP-HUVECs were monitored for 10 days using 
an Olympus IX70 inverted fluorescence microscope 

Table 1 List of antibodies and other staining reagents
Reagents Host Dilution Supplier Cat#.
Primary antibodies

Anti-CD31 Mouse 1:200 (ICC) Abcam ab9498

Anti-collagen IV Rabbit 1:100 (ICC) Abcam ab6586

1:500 (WB)

Anti-Laminin Mouse 1:100 (ICC) Abcam ab77175

1:500 (WB)

Anti-VE-cadherin Mouse 1:200 (ICC) Santa Cruz sc-9989

1:500 (WB)

Anti-β-catenin Mouse 1:200 (ICC) Santa Cruz sc-7963

1:500 (WB)

Anti-Vinculin Rabbit 1:200 (ICC) Abcam ab155120

Anti-GAPDH Rabbit 1:500 (WB) Abcam ab181602

Secondary antibodies

Anti-mouse-AF-555 Goat 1:200 Abcam ab150118

Anti-rabbit-AF-488 Goat 1:200 Abcam ab150077

Anti-mouse-AF-488 Goat 1:200 Abcam ab150113

Anti-rabbit-HRP Goat 1:6000 Abcam ab6721

Anti-mouse-HRP Goat 1:5000 Abcam ab205719

Others

Phalloidin-AF 555 1:500 Abcam ab176756

DAPI* 1:500 Thermo fisher 62,247
*DAPI, 4′,6-diamidino-2-phenylindole; ICC, Immunocytochemistry; WB, 
Western blotting
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(Olympus, Tokyo, Japan) equipped with LED illuminator 
(pE-300white, CoolLED) and SPOT 5.4 BASIC Software 
(SPOT Imaging). Collagen gels and 2D cell layers were 
imaged using an Olympus IX83 inverted fluorescence 
microscope (Olympus, Tokyo, Japan) equipped with 
CellSense Dimension image acquisition software (Olym-
pus, Tokyo, Japan). All images were analyzed with ImageJ 
software (https://imagej.nih.gov/ij/).

Quantification of MVN vascular junction and tubule length 
per field of view (FOV)
MVNs were analyzed using ImageJ software (https://
imagej.nih.gov/ij/) and Angiogenesis Analyzer plugin 
(https://imagej.nih.gov/ij/macros/toolsets/Angiogen-
esis%20Analyzer.txt). Briefly, raw images were converted 
into binary images using automated thresholds for 
binary tree analysis in the Angiogenesis Analyzer plugin. 
Number of junctions and total branching lengths were 
measured and presented as number of vascular junc-
tions and tubule length per FOV, respectively. Junctions 
were denoted by points that had at least 3 neighbors, 
and tubule length referred to length of elements bound 
by two junctions or between one junction and one end 
point.

Conjugation of FITC-PVP
Polyvinylpyrrolidone (PVP, 10  mg/ml; Sigma-Aldrich, 
Saint Louis, MO, USA, Cat#. PVP40) was added to 
5-azido-2-nitrobenzoic acid N-hydroxysuccinimide ester 
(5-NABSIE, 2  mg/ml; Sigma-Aldrich, Saint Louis, MO, 
USA, Cat#. A3282) in DMSO yielding the equivalent of 
1/75 of monomer units in the reaction batch. The result-
ing mixture was incubated under UV irradiation for 
20  min, leading to 5-NABSIE activation, nitrene radi-
cal formation and C-H insertion into the PVP polymer 
strand, rendering the polymer amino reactive. In paral-
lel, 10 mg/ml of fluorescein (FL) (Sigma-Aldrich) in 50% 
DMSO in water, equivalent to 1/7.5 monomer units 
related to PVP was mixed with equimolar amounts of 
carbonyldiimidazole (CDI) (Sigma-Aldrich, Saint Louis, 
MO, USA, Cat#. 115,533) (10  mg/ml in DMSO) and 
allowed to react for 10  min. The CDI activated FL was 
mixed at equimolar ratio with propylenediamine (PDA) 
(Sigma-Aldrich) solution (10  mg/ml in DMSO) under 
vigorous mixing and was allowed to react for 20  min. 
The amino reactive PVP solution was then mixed with 
the amino functional FL solution in a molar ratio of 1:10, 
having 10 times excess of amino functional FL compared 
to reactive groups on the PVP backbone. This solution 
was allowed to react for 3  h at room temperature fol-
lowed by 1:3 dilution with water and dialysis against 
water for 3 days with dialysis medium change every 24 h. 
The resulting polymer solution was freeze-dried and kept 
as powder for specific use.

Microvascular network permeability assay and 
quantification of permeability coefficient
MVN permeability was quantified by introducing 250 µg/
ml of FITC-PVP or Texas Red™ Albumin from Bovine 
Serum (BSA) (Invitrogen, Cat#. A23017) in EGM-2 
solution into one of the medium channels. For this, 
one medium channel was seeded with an endothelial 
monolayer on day 2. On day 4 of culture, medium was 
removed from each port and 15  µl of FITC-PVP solu-
tion was added into the outlet port of the channel seeded 
with endothelial cells. MVNs were then perfused by 
hydrostatic pressure resulting from the different levels 
of medium in the two medium channels until an equilib-
rium was reached. Time lapse images were taken every 
15 s for 15 min using a Nikon Ti-E inverted fluorescent 
microscope (Nikon, Tokyo, Japan). Images were used to 
compute the permeability coefficient as described pre-
viously [12]. Briefly, the efflux rate of the fluorophores 
equals to the rate it accumulates in the hydrogel assum-
ing the fluorescence intensity in the vessel is constant 
and the vessels are cylindrical. To calculate the perme-
ability coefficient, measuring windows were drawn that 
included the vessel and the hydrogel embedded within. 
The windows were placed at vessels with a diameter 
smaller than 50 μm to ensure their circularity. This is of 
high importance as the formula for calculating the per-
meability coefficient is only valid with circular lumens. 
Furthermore, windows were placed at locations that did 
not exhibit any contamination by dye diffusing directly 
into the hydrogel from the side channel. The average 
fluorescence intensity at initial and final time points was 
obtained and the permeability was calculated according 
to the equation,
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whereIi , Ib  and If  represent the average intensity in the 
measuring window at the initial time point, background, 
and final time point; ∆t  refers to the duration between 
initial and final time point; and d  is the average diam-
eter of the vessel in the measuring window. n = 15 were 
obtained.

Western blotting
PDMS devices were peeled off from the glass slide using 
a cutter and cells within the center channel were lysed 
using a 1:1 mixture of 2x Laemmli buffer and 2x protease 
inhibitor cocktail (Sigma-Aldrich, Cat#. P8340). Protein 
concentrations of collected samples were measured using 
a Bicinchoninic acid (BCA) Protein Assay Kit (Thermo 
Fisher, Cat#. A53226). Samples were denatured at 95  °C 
for 5  min and loaded at equal protein amounts into 8% 
SDS-polyacrylamide gels (Life Technologies, Cat#. 

https://imagej.nih.gov/ij/
https://imagej.nih.gov/ij/
https://imagej.nih.gov/ij/
https://imagej.nih.gov/ij/macros/toolsets/Angiogenesis%20Analyzer.txt
https://imagej.nih.gov/ij/macros/toolsets/Angiogenesis%20Analyzer.txt
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HC2040) and subjected to electrophoresis at 120 V. After 
protein separation, samples were electrotransferred to a 
polyvinylidene difluoride membrane (Thermo Scientific, 
Cat#. 88,518) using a Power Blotter XL SYS (Life Tech-
nologies, Rockford, IL, USA, cat#0.34580). For membrane 
staining, membranes were incubated with 5% skimmed 
milk (Phygene Biotechnology Co Ltd, FuZhou, China, 
Cat#. PH1519) in TBS-Tween 20 (TBST), containing 
50 mM Tris, 150 mM NaCl and 0.5% Tween 20 (Sigma-
Aldrich, Cat#. P2287) to block non-specific antibody 
binding before incubation with primary antibodies (see 
Table  1) in TBST containing 1% skimmed milk at 4  °C 
overnight. After washing three times with TBST, second-
ary antibodies (see Table  1) resuspended in TBST con-
taining 1% skimmed milk were added to the blots for 1 h 
at room temperature. Proteins bands were then detected 
with ECL Super Signal West Pico Plus (Life Technolo-
gies, Cat#34,580) using ChemiDocTM MP Imaging Sys-
tem (Bio-Rad Laboratories) and quantified by Image Lab 
6.1 software (Bio-Rad, https://www.bio-rad.com/en-hk/
product/image-lab-software?ID=KRE6P5E8Z).

Cellular contractility assay
HUVECs and MSCs were seeded into 3 mg/ml 3-dimen-
sional collagen hydrogels (TeloCol – 6, Advanced Bioma-
trix, Cat#. 5225-50ml) at a cell concentration of 250,000 
cells/ml using the hanging drop technique [50]. In brief, 
HUVECs and MSCs were resuspended in EGM-2 and 
DMEM, respectively, and mixed 1:1 with a cold neu-
tralized collagen type I solution. 10 µl drops of the mix-
ture were placed onto the lid of a 90  mm Petri dish on 
day 0. The lid was then inverted carefully and placed in 
a humidified 37  °C incubator for 15  min for gel polym-
erization. Fully polymerized hydrogels were placed into 
cell culture wells containing control or MMC culture 
medium. After 2 days of culture, the collagen gels were 
fixed with 4% PFA. Collagen hydrogel and cells were 
imaged as described above in the Microscopy section. 
Gel size and average fluorescent intensity were quantified 
using ImageJ software (https://imagej.nih.gov/ij/).

Rheology measurements
Cell-free collagen hydrogels with a final concentration of 
3  mg/ml were polymerized as mentioned before, trans-
ferred to control medium or MMC containing medium 
for 2 days before undergoing rheology tests by using a 
rheometer (Malvern Kinexus Lab + Plate Package 20  N, 
KNX5, NETZSCH-Gerätebau GmbH). The viscoelastic-
ity of the gel was measured at 37˚C at 1 Hz frequency and 
0.1% shear strain.

Statistical analysis
At least three independent biological runs with at 
least three replicates each were performed for each 

experiment. Statistical analysis of band intensity on 
Western blot, permeability coefficient, staining mean 
intensity, cellular contractility assay and MVNs quanti-
fication were calculated by Student’s t-test. Holm-Sidak 
test was performed for multiple comparisons, and p-val-
ues below 0.05 were considered statistically significant. 
The analysis was performed using GraphPad Prism v8.0 
(GraphPad Software, San Diego, CA, USA, www.graph-
pad.com).

Results
MMC stabilized MVNs in microfluidic devices
Using a previously established design, consisting of three 
channels separated by permeable partitions (Fig.  1A), 
HUVECs and human bone marrow derived MSCs [51, 
52], purposed as pericytes, were seeded in a fibrino-
gen solution into the center channel (Fig.  1B). The co-
supplemented thrombin facilitated the formation of a 
stable fibrin hydrogel within minutes, which served as a 
3D matrix for the embedded cells. No protease inhibi-
tors were added to avoid interference with the biologi-
cal processes within the devices. As reported previously 
[23], cells re-arranged into tubule-like structures within 
2 days and formed interconnected MVNs (Fig. 1C). One 
day after cell seeding, MMC was optionally introduced 
as a supplemental treatment to the culture medium into 
the microfluidic devices. Cells not exposed to MMC were 
utilized as the control. We utilized an established MMC 
cocktail [39] based on a mixture of two Ficoll macro-
molecules (70 kDa and 400 kDa) dissolved in cell culture 
medium at a previously optimized concentration [39]. It 
has been shown previously that an entropy-based syn-
ergy is created by a mixture of two different size popu-
lations of artificial crowders, providing small crowders 
with extra volume occupancy when in the vicinity of 
larger ones [38]. The established crowder cocktail has 
been shown to drive ECM deposition for various cell 
types in 2D [37, 39] and recently also in 3D [41, 49].

Utilization of green fluorescent protein (GFP)-express-
ing HUVECs allowed continuous tracking of the forma-
tion and regression of MVNs over time (Fig.  2). Early 
addition of the MMC cocktail to the microfluidic device 
did not affect the initial formation of an intricate MVN, 
as evident by the comparable morphology (Fig.  2A and 
S1), number of vascular junctions (Fig.  2B) and total 
tube length per field of view (FOV) (Fig. 2C) during the 
first 2–3 days of culture. Over time, MVNs under con-
trol (no MMC) and MMC-supplemented (crowded) 
conditions dynamically morphed and retracted into 
thicker tubular structures. Visually striking was the dis-
integration of MVNs into disjointed isolated structures 
from day 6 onwards under control conditions, whereas 
crowded MVNs remained continuous until the end of 
the study (day 10) (Fig. 2A). This was also reflected in the 

https://www.bio-rad.com/en-hk/product/image-lab-software?ID=KRE6P5E8Z
https://www.bio-rad.com/en-hk/product/image-lab-software?ID=KRE6P5E8Z
https://imagej.nih.gov/ij/
http://www.graphpad.com
http://www.graphpad.com
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quantitatively assessed number of vascular junctions, as 
well as total length of tubular structures, which were sig-
nificantly higher under supplementation of MMC from 
day 4 onwards (Fig. 2B, C).

MMC promoted the formation and preservation of a 
vascular basement membrane
Since initial differences in MVN stability were noticeable 
on day 4 and became even more apparent by day 7, we 
investigated the localization of major basement mem-
brane components by confocal microscopy on day 4 and 
quantified their abundance on days 4 and 7 by West-
ern blot. As evident in the laminin staining (Fig.  3A), 
all microvascular structures were covered abundantly 
by basement membrane. Similarly, microvascular cells 
exhibited a robust expression of vinculin, suggesting 
that cells formed focal adhesions and interacted with 
their basement membrane. High magnification confocal 
z-stack analysis of formed microvasculature confirmed 
that the tubular structures were in the size range of cap-
illaries (< 100 μm) [2] and exhibited hollow and circular 
lumina (Fig. 3B, C, S2). Furthermore, co-staining of focal 
adhesions (vinculin) and endothelial cell surface marker 
CD31 with basement membrane components laminin 
or collagen type IV, respectively, demonstrated that 
endothelial structures were enveloped in a tight sheath 
of basement membrane. These findings confirmed an 
apical-basal polarity of formed microvessels. Levels of 

basement membrane components were further evaluated 
by Western blot analysis of samples collected on days 4 
and 7. For this, laminin and collagen IV levels were ini-
tially normalized to the respective levels of GAPDH (cell 
number, Fig. 3D) or CD31 (number of endothelial cells, 
Figure S3) of the same samples. Relative changes in base-
ment membrane component levels were then displayed 
as fold-change to control culture (no MMC) conditions. 
As a result, a significant accumulation of collagen type 
IV and laminin in MMC-supplemented cultures was 
observed. This was irrespective of their levels being nor-
malized to the number of total cells or endothelial cells 
(Fig. 3D, S3).

MMC promoted the formation cell-cell junctions
Inter-endothelial cell-cell junctions are crucial for 
microvessel integrity and proper function. We thus inves-
tigated VE-cadherin and β-catenin localization and over-
all levels in MVNs cultured under crowded and control 
conditions (Fig.  4A). Maximum intensity projections of 
confocal slices taken from samples cultured for 4 days 
visualized junctional proteins sharply outlining endothe-
lial cells in both conditions.

Furthermore, when endothelial cell-specific VE-cad-
herin was co-stained with F-actin, MSCs (negative for 
VE-cadherin) were identified taking up perivascular loca-
tion (Fig. 4A, white arrows), as reported previously [23]. 
Western blot analysis of samples collected on days 4 and 

Fig. 1 HUVECs and MSCs form interconnected MVNs within the microfluidic device. (A) Device dimensions of the three-channel microfluidic device. (B) 
Photograph and schematic of cell seeding into the three-channel microfluidic device. HUVECs and MSCs are seeded in a fibrinogen solution into the 
center channel via the cell inlet port. The co-supplemented thrombin induces fibrin polymerization within 20 min. Over the next two days, seeded cells 
re-arrange into interconnected MVNs within the fibrin hydrogel. (C) Representative phase contrast micrographs of seeded HUVECs and MSCs forming 
MVNs in microfluidic devices within 2 days. Scale bar = 400 μm

 



Page 8 of 16Wan et al. Biomaterials Research           (2023) 27:32 

7, revealed an abundance of VE-cadherin in MMC-sup-
plemented cultures on both time points and a significant 
accumulation of β-catenin on day 7, irrespective of pro-
tein levels being normalized to the number of total cells 
(GAPDH levels, Fig. 4B) or endothelial cells (CD31 levels, 
Figure S3).

MMC improved vascular barrier functions of MVNs
Vascular barrier function or low vascular permeability 
is dependent on tightly associated cell-cell junctions, as 
well as a properly assembled basement membrane and 
other factors [1]. As MMC resulted in the prominent 
accumulation of cellular junctional and basement mem-
brane protein components in MVNs, we hypothesized 
that MVNs cultured under MMC might also exhibit a 
lower permeability and thus improved barrier functions.

In order to investigate this, HUVECs were addition-
ally seeded into the medium channels on day 2 to form a 
continuous endothelial monolayer at the media-hydrogel 
interface. Seeded endothelial cells then anastomosed with 

the MVN of the center channel, thereby forming vascular 
openings to the medium channels by day 4. When cul-
ture medium was supplemented with fluorescein-5-iso-
thiocyanate (FITC)-labelled polyvinylpyrrolidone (PVP, 
40 kDa) or Texas RedTM-labelled bovine serum albumin 
(BSA) and added to one of the medium channels, live flu-
orescence microscopy clearly demonstrated that MVNs 
were perfusable from the medium channels under both 
conditions (Fig. 5A,C). However, vascular openings were 
clearly more abundant in MVNs cultured under crowded 
conditions (Figure S4), likely caused by the maintenance 
of well interconnected microvessels, resulting in more 
ready perfusability for MVNs grown under crowded 
conditions.

Vascular permeability can be measured through hin-
drance flux of solutes across the vessel wall [12]. Diffusive 
transport of FITC-PVP (40  kDa) and Texas RedTM-BSA 
across the microvascular wall was measured as a func-
tion of the change in fluorescence intensity in a defined 
volume in the perivascular space (hydrogel region) 

Fig. 2 MMC stabilized MVNs in microfluidic devices. MVNs formed by GFP-expressing HUVECs cultured under control (no MMC) or crowded conditions 
(+ MMC) were continuously monitored for 10 days. (A) Representative pictures depicting fluorescent MVNs formed by GFP-expressing HUVECs at different 
time points. (B) Quantification of number of vascular junctions and (C) tubule length per field of view (FOV) using ImageJ angiogenesis analyzer plug-in. 
*, p < 0.05; **, p < 0.01; ***, p < 0.001; ****, p < 0.0001. n = 5 biological replicates. Scale bar = 100 μm
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over time (imaging carried out every 15  s for 15  min). 
Assuming that microvessels exhibited circular tubu-
lar structures of less than 50 μm, the permeability coef-
ficient was quantified, based on previously published 
methods [12]. Indeed, a permeability coefficient of 
7.34 ± 1.31 × 10− 7  cm/s was obtained in 3D MVNs cul-
tured under MMC, lower by one-order-of-magnitude as 
compared to 7.29 ± 5.71 × 10− 6  cm/s determined in con-
trol (no MMC) 3D MVNs for FITC-PVP (Fig.  5C). The 
current permeability coefficient determined for MVNs 
under crowded conditions is therefore in the same order 
of magnitude as for same size macromolecules in rat 
venular vessels in vivo (1.37 ± 0.26 × 10− 7 cm/s) [53], sug-
gesting that crowded MVNs exhibited better vascular 
barrier function, comparable to physiological levels. Sim-
ilarly, a permeability coefficient of 5.10 ± 2.95 × 10− 7 cm/s 
was obtained in 3D MVNs cultured under MMC, 
lower by one-order-of-magnitude as compared to 

2.16 ± 1.10 × 10− 6 cm/s determined in control (no MMC) 
3D MVNs for Texas RedTM-BSA (Fig.  5D). Hence, the 
current permeability coefficient determined for MVNs in 
the presence of MMC is in the same order of magnitude 
as that of post-capillary rat venules in vivo [54, 55].

MMC reduced cellular contractility
One of the major mechanisms by which MVNs regress 
in microfluidic devices is via pruning and cellular retrac-
tion, both processes dependent on cellular contractility. 
Hence, we investigated whether MMC would also affect 
cytoskeleton assembly and cellular contractility in 3D.

HUVECs and MSCs were allowed to attach overnight 
and then cultured for 2 days in 2D under crowded or 
control (no MMC) conditions, after which they were 
stained for filamentous actin (F-actin) by fluorescently-
tagged phalloidin and imaged under identical conditions 
including laser intensity and exposure time. A striking 

Fig. 3 MMC promoted the formation of basement membrane enveloping microvascular hollow tubes. Day 4 MVNs were immunostained for basement 
membrane components, laminin and collagen IV, as well as the focal adhesion component, vinculin, and endothelial cell surface marker CD31. (A) Confo-
cal microscopy images. Scale bar = 200 μm. (B,C) Confocal microscopy images including z-stack images displayed as orthogonal view. Locations of cross-
sections are indicated by white lines and orthogonal cross-sections are displayed on the sides. Scale bar = 50 μm. (D) Western blot and densitometric 
band analysis of laminin and collagen IV normalized to their respective GAPDH levels of samples collected on days 4 and day 7. Protein levels are displayed 
as fold-change as compared to control. *, p < 0.05. n = 4 biological replicates
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reduction in F-actin staining intensity was observed 
under crowded conditions (Fig.  6A, B), suggesting a 
reduction in cytoskeletal force generation under MMC in 
both cell types. To test this hypothesis, each cell type was 
seeded into 3D spherical collagen type I hydrogels, which 
were allowed to fully polymerize to ensure comparable 
cross-linking density and thus mechanical properties, 
before being exposed to either culture medium for 2 days. 
Equilibrated initial hydrogel diameters (size) on day 0 and 
after 2 days of culture, were recorded and reduction in 
hydrogel size was calculated (Fig. 6C, D). To confirm that 
incubation of collagen hydrogels with or without MMC 
did not affect hydrogel mechanical properties, hydrogels 
free of cells underwent rheological analysis after 2 days 
of incubation in either culture medium. Indeed, a com-
parable storage modulus G’ of approximately 100 Pa for 
hydrogels incubated under control and MMC conditions 
was confirmed (Figure S5).

As reported previously [56, 57], cell-laden collagen 
hydrogels shrank in size, due to cellular contractility 
under both conditions. However, it is noteworthy that the 
size reduction was significantly more pronounced under 
control (no MMC) conditions, suggesting that both cell 
types were less contractile when cultured under MMC 
(Fig. 6C, D).

Discussion
We report here the establishment of an easy and read-
ily applicable and reproducible approach to stabilize and 
improve the functionality of 3D MVNs in microfluidic 
devices, which can be applied in a wide range of scenarios 
and laboratories. This protocol works without the previ-
ously necessary addition of auxiliary cells (fibroblasts) 
[20, 24], protease inhibitors [22, 27–29] or high doses of 
growth factors [23].

Fig. 4 MMC promotes the formation of cell-cell junctions. (A) Representative maximum intensity projections of confocal z-stacks taken of MVNs grown 
under control or crowded (+ MMC) conditions and stained for DAPI and with phalloidin for F-Actin, as well as immunostained for adherens junction 
proteins, VE-Cadherin and β-catenin. Scale bar = 50 μm. (B) Western blot and densitometric band analysis of VE-cadherin and β-catenin normalized to the 
respective GAPDH levels of samples collected on days 4 and day 7. Protein levels are displayed as fold-changes as compared to control. *, p < 0.05; ***, 
p < 0.001. n = 4 biological replicates
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A major limitation of such in vitro engineered MVNs 
has been the limited stability and fast retraction of the 
formed microvessels under standard culture conditions 
[23]. Although there are a few studies that have reported 
longer lasting stabilities, some of us and many others 
have experienced that this is highly dependent on the 
lot of endothelial cells used, with the majority of MVNs 
retracting immediately upon formation. This character-
istic largely limits the studies that are performed using 
MVNs in microfluidic devices. Strategies addressing 

this have included the introduction of large numbers of 
tertiary cells (fibroblasts) [20] and even immortaliza-
tion of well performing cell types [30]. However, such 
approaches introduce another level of complexity, poten-
tially changing the biological processes involved, and are 
not available in all research laboratories. Hence, there is 
a need for a more simple and straightforward approach 
to stabilize MVNs that is applicable to a broad variety of 
experimental set-ups.

Fig. 5 MMC decreased vascular permeability. MVNs cultured under crowded (+ MMC), and control conditions (no MMC) were perfused with FITC-PVP 
(40 kDa, A & B) or Texas RedTM-BSA (C & D), respectively, supplemented culture medium. (A) and (C) Representative frame from live cell imaging showing 
the perfusion of MVN from one medium channel to the other on day 4. Scale bar = 100 μm. (B ) and (D) Permeability coefficient of MVNs for FITC-PVP 
(40 kDa) and Texas RedTM-BSA, respectively, cultured under control and crowded conditions on day 4. **, p < 0.01; ****, p < 0.0001

 



Page 12 of 16Wan et al. Biomaterials Research           (2023) 27:32 

The MMC cocktail utilized here can be directly dis-
solved in the culture medium and is well established, thus 
enabling a simplified approach to stabilize MVNs. The 
neutral, highly branched, hydrophilic Ficoll macromol-
ecules used in the protocol are epichlorohydrin cross-
linked poly-sucrose polymers and are commercially 
available [58]. They are widely used for gradient separa-
tion of hematopoietic stem cells and MSCs [58, 59], as 
well as freezing of in vitro fertilized eggs [60]. Ficoll is 
a clinically approved material in transfusion medicine 
and in vitro fertilization. Moreover, Ficoll macromol-
ecules have been shown over the years to be compatible 
even with sensitive cell types and are thus not likely to 
interfere with cellular processes within the microfluidic 
devices. It is therefore not unexpected that the initial for-
mation of MVNs was not affected. MVNs cultured under 
MMC exhibited hollow and circular lumen and small 
vessel diameter, apical-basal polarity with MSCs taking 
up perivascular locations and thus acting as pericytes and 

a vessel permeability comparable to in vivo observations, 
thus closely resembling a capillary bed.

The results presented here are also in line with those 
from a previous study investigating plasma expanders in 
a hydrogel-molded microvessel, which exhibited vessel 
stabilizing effects, improved VE-cadherin expression and 
reduced focal leaks [61]. Since the plasma expander was 
3% dextran (70  kDa, a neutral carbohydrate macromol-
ecule), it might have acted as macromolecular crowder.

The observed improved stability and functionality of 
MVNs under MMC likely results from a combination of 
factors, including better preserved basement membrane, 
cellular junctions, as well as reduced cell contractility, 
leading to reduced vascular retraction. Indeed, it has 
been postulated that the balance between cellular tension 
and adhesive forces regulates endothelial barrier function 
[62]. Laminin, an integrin ligand and major component 
of the vascular basement membrane, is highly enriched 
under MMC, while tightly sheathing endothelial tubu-
lar structures. A previous study suggested that laminin 

Fig. 6 MMC reduced cellular contractility. (A) Fluorescence microscopy of phalloidin stained F-actin in 2D cultures of HUVECs and MSCs that were cul-
tured in control (no MMC) or MMC medium for 2 days. Scale bar = 200 μm. (B) Quantification of fluorescence intensity of stained F-actin fibers normalized 
to cell number. (C) Functional cell contractility assay: HUVECs or MSCs were each seeded in spherical 3D collagen type I hydrogels on day 0 and cultured 
for 2 days under control or crowded (+ MMC) conditions. Phase contrast images were taken on day 0 and day 2. Scale bar = 500 μm (D) Diameter (size) 
measurements of cell-seeded hydrogels. Data are shown as relative fold-change of diameter as compared to day 0. *, p < 0.05; **, p < 0.01; ***, p < 0.001. 
n = 7 biological replicates
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stabilizes vascular networks through inhibition of lumen 
expansion and tubular morphogenesis [63, 64]. Interac-
tion of endothelial cells with basement membrane com-
ponents such as laminin was also previously shown to 
regulate VE-cadherin localization and endothelial barrier 
function [65]. Interestingly, VE-cadherin was also highly 
enriched under MMC and previously reported to be cru-
cial for vessel integrity [66, 67] by stabilizing endothelial 
junctions. Furthermore, VE-cadherin was demonstrated 
to bind to intracellular β-catenin and to interact with 
actin-binding proteins, such as vinculin, before anchor-
ing this complex to the cytoskeleton, thereby controlling 
vessel permeability [68]. Hence, improved formation of 
cell-cell junctions under MMC is likely responsible for 
the improved vascular barrier functions.

It is noteworthy that changes in VE-cadherin-mediated 
cell-cell adhesion and integrin-mediated cell-basement 
membrane adhesion coordinately affect the physical 
and mechanical re-arrangement of the endothelial cells. 
Work by others demonstrated that VE-cadherin sig-
naled through RhoA, thereby increasing cellular stress 
fiber formation and thereby resulting in cellular contrac-
tility and a denser focal adhesion formation [69]. This 
finding, however, could not be confirmed in our experi-
mental set-up, as we observed a clear accumulation of 
VE-cadherin and focal adhesion ligands under MMC, 
while stress fiber formation and cellular contractility 
were decreased. Hence, MMC seems to be highly advan-
tageous, as it promotes cell-matrix and cell-cell inter-
actions while decreasing cellular contractility, thereby 
improving MVNs stability and functionality. This favored 
balance of adhesive forces to cellular tension is suggested 
to be the main driver of the improved endothelial barrier 
functions observed here. Other factors and conditions 
that have been reported to further improve endothe-
lial barrier functions include culture under shear stress 
and/or hypoxia, as well as choosing the appropriate cell 
type, such as brain specific endothelial cells, pericytes 
and astrocytes to model the blood-brain-barrier [70]. We 
postulate that by introducing MMC into these cultures, 
MVN functionality and resemblance to physiological 
conditions can be further improved.

Conclusion
In summary, by integrating two engineering core tech-
nologies, based on microfluidic MVNs and MMC, we 
have provided a reliable and flexible approach to stabilize 
engineered microvessels and improve their functionality, 
thereby enabling a closer resemblance to physiological 
conditions. Hence, utilization of MMC in MVN enables 
to engineer vascularized physiologically relevant micro-
physiological systems and micro-tissues on-a-chip, as 
well as potentially open avenues to engineer larger vascu-
larized tissues for regenerative medicine.
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