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Abstract 

Artificial olfactory sensors that recognize patterns transmitted by olfactory receptors are emerging as a technology 
for monitoring volatile organic compounds. Advances in statistical processing methods and data processing technol‑
ogy have made it possible to classify patterns in sensor arrays. Moreover, biomimetic olfactory recognition sensors 
in the form of pattern recognition have been developed. Deep learning and artificial intelligence technologies have 
enabled the classification of pattern data from more sensor arrays, and improved artificial olfactory sensor technol‑
ogy is being developed with the introduction of artificial neural networks. An example of an artificial olfactory sensor 
is the electronic nose. It is an array of various types of sensors, such as metal oxides, electrochemical sensors, surface 
acoustic waves, quartz crystal microbalances, organic dyes, colorimetric sensors, conductive polymers, and mass 
spectrometers. It can be tailored depending on the operating environment and the performance requirements of the 
artificial olfactory sensor. This review compiles artificial olfactory sensor technology based on olfactory mechanisms. 
We introduce the mechanisms of artificial olfactory sensors and examples used in food quality and stability assess‑
ment, environmental monitoring, and diagnostics. Although current artificial olfactory sensor technology has several 
limitations and there is limited commercialization owing to reliability and standardization issues, there is considerable 
potential for developing this technology. Artificial olfactory sensors are expected to be widely used in advanced pat‑
tern recognition and learning technologies, along with advanced sensor technology in the future.
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Background
Biomimetics is an interdisciplinary field in which engi-
neering, chemistry, and biology principles are applied to 
the synthesis of materials, synthetic systems, or machines 
that have functions mimicking biological processes 
[1]. Humans have continuously attempted to design 

technologies that resemble nature. Weapons, such as 
spears and knives, used by primitive people were inspired 
by predators with sharp claws and teeth. Ancient Greeks 
saw sharp backbones of fish and made saws. They also 
used spider webs to stop bleeding when they saw how 
spiders used their webs to capture food. Why do humans 
study technology that resembles that of nature? It is 
because the excellent characteristics of these creatures 
enabled their survival. Recently, research on the appli-
cation of biomimetic technologies has become increas-
ingly active in various fields, including self-healing ability, 
environmental exposure resistance, hydrophobicity, self-
assembly, and solar energy utilization [2–5].
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Various human senses are digitized through sensors, 
and biomimetic technology with sensory recognition 
mechanisms has permeated into our daily life in various 
ways. Examples include image sensors that replace eyes, 
speakers that replace hearing, and pressure sensors that 
replace touch. In many instances, these sensors are much 
more sensitive than our sense organs, enabling visuali-
zation of infrared and ultraviolet radiation and making 
ultrasonic sound discernible [6–8]. Furthermore, these 
sensors also provide new senses such as a sense of loca-
tion and orientation enabled by the global positioning 
system (GPS) and gyroscopes, respectively [9, 10]. How-
ever, there is surprisingly slow progress in the digitized 
detection of chemicals such as via smell and taste. This 
can be ascribed to the complexity of recognizing olfac-
tory information and various technical limitations. 
However, interest in research on olfactory recognition 
mechanisms has been steadily increasing. Although our 
understanding of the mechanisms underpinning the 
sense of smell remains elusive, our limited knowledge is 
continuously being applied in various fields, such as the 
food, beauty, and health industries [11–13].

Smell is an important factor for survival. If there is 
limited vision and hearing, animals rely on their sense of 
smell to make situational judgments. Smell enables the 
detection of food and toxic fumes, including smoke from 
fires, at very long distances. Although the human sense of 
smell has deteriorated compared to that of other animals, 
it remains the most sensitive of the five senses. Visual 
senses can distinguish colors with three types of recep-
tors, but olfactory senses can distinguish 10,000 kinds of 
smells with approximately 400 types of receptors [14, 15]. 
Olfactory receptors are proteins that bind to odor mol-
ecules in the nose, allowing the sensing of odors [16, 17]. 
A person with a well-developed sense of smell can detect 
odors diluted as low as 0.01 ppb (part per billion). It can 
detect one in 100 trillion air molecules [18, 19]. This is 
superior to state-of-the-art gas sensor technology, and 
artificial olfactory model research that imitates the olfac-
tory mechanism through pattern recognition is emerg-
ing as a promising research field. Furthermore, owing to 
the importance of the sense of smell, the development of 
technology to reproduce it is also continuing. In the past, 
the sense of smell has been classified as a field that is dif-
ficult to investigate with scientific rigor. This is because 
it is very difficult to effectively collect and accurately dis-
tinguish odors. In addition, there are more than tens of 
thousands of types of odor, and its recognition is diverse. 
Therefore, research on the olfactory system has been 
slow to progress compared to that of the other senses.

Artificial olfactory systems have fascinated scien-
tists for approximately 40 years, especially with a sali-
ent paper published by Persaud and Dodd in 1982 [20]. 

They showed that different odors can be distinguished 
using four chemical sensors with overlapping selection 
patterns. The signal combination pattern that appears 
in the ensemble of each receptor is key to the classifica-
tion, identification, and recognition of odors [21]. Since 
the 1980s, almost all olfactory sensor technologies have 
consisted of sensor arrays with specific functions for clas-
sifying odors. An electronic nose (e-nose) model that 
imitates the human olfactory recognition system using 
an array of electronic sensors has been introduced and 
is emerging as a representative example of an artificial 
olfactory system [22].

Thus far, research has mainly focused on nanosen-
sor-based artificial receptor technology that can detect 
chemicals. Olfactory receptors are only one aspect of the 
rich architecture responsible for the sense of smell. How-
ever, other important functions of the olfactory epithe-
lia, such as large numbers of olfactory receptor neurons, 
hierarchical organization, odor patterns in the olfactory 
bulbs (OBs), and the diffusion of odor molecules along 
the olfactory area, have been much less considered. To 
improve the development of artificial olfactory technol-
ogy, it is necessary to understand the olfactory recogni-
tion mechanism and utilize engineering technology that 
can imitate it. Figure 1 presents a scheme of an artificial 
olfactory sensor model based on the human olfactory 
recognition system. This review introduces the biologi-
cal olfactory recognition mechanism, the data processing 
technology of signal patterns that can imitate it, and dis-
cuss the research trends in artificial olfactory sensor sys-
tem technology.

Mechanism of olfactory recognition through pattern 
classification
Olfactory recognition process through pattern recognition 
of olfactory receptors
Menini et  al. described the interaction of volatile mole-
cules with various molecular structures in the vertebrate 
olfactory system (Fig. 2) [23]. In the process of inhaling 
air, volatile molecules reach the inside of the nose. The 
olfactory epithelium in the nasal cavity interacts with 
these odor molecules. Olfactory sensory neurons that act 
as receptors transmit molecular binding processes to the 
brain via electrical signals. Therefore, the essence of odor 
perception involves the transformation of the chemi-
cal interaction of olfactory receptors with volatile mol-
ecules into electrical signals that carry information about 
the external world to the brain [23, 24]. The information 
sent to the secondary neuron of OB is projected into the 
olfactory cortex and other brain regions. Information 
about odors is encoded in pattern form in OB. In other 
words, the determination of smell is determined by the 
pattern formed by a combination of different receptors 
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Fig. 1  Schematic of biomimetic olfactory sensor based on olfactory recognition system. Development of artificial olfactory sensor systems through 
pattern recognition of sensor arrays, focusing on the mechanism by which humans detect and recognize odors

Fig. 2  Schematic diagram of the olfactory system. In the process of inhaling air, volatile molecules reach the inside of the nose. The olfactory 
epithelium in the nasal cavity interacts with these odor molecules. The axons of the olfactory sensory neurons are projected onto the OB to be 
septaped with the dendrite of the secondary neuron, which is projected onto the olfactory cortex. The determination of smell is determined by the 
pattern formed by a combination of different receptors that recognize the specific molecular characteristics of each odor molecule
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that recognize the specific molecular characteristics of 
each odor molecule.

The sensitivity and accuracy of the biological olfactory 
system are excellent. Tens of thousands of low-molecu-
lar-weight organic compounds can be detected and dif-
ferentiated. The olfactory system recreates memories 
of various organic polymers, including alcohols, esters, 
carboxylic acids, ketones, sulfides, nitriles, thiols, immi-
gration, halides, and ethers [25] With the rise of cogni-
tive engineering over the last 20 years, the sophisticated 
mechanism of smell has attracted attention.

From flies to mammals, higher eukaryotes developed a 
sense of smell in a common manner. Odor discrimination 
arises from the interaction between odor determinants 
and receptor residues [26]. The neural mechanism of 
odor discrimination begins with differential interactions 
between different types of receptors and odor molecules, 
similar to the interactions between antigens and antibod-
ies in the immune system or between neurotransmitters 
and receptors in the nervous system [27, 28]. Similar to 
antigens, odor molecules can be called odogens and play 
the same role as epitopes. When a receptor binds to an 
odor molecule, it converts the chemical energy of the 
recognition event into a nerve signal (via a change in 
membrane potential). Signals transmitted by the olfac-
tory receptors are transmitted through the OB. The OB is 
a structure that processes information about odors and is 
a key part of the nervous system responsible for the sense 
of smell. It serves as a pathway that transmits odor inputs 
to other locations in the brain. Smell is perceived through 
a combination of several olfactory receptors [29]. The 
brain recognizes each odor molecule as a unique combi-
nation code. Even a slight change in the structure of the 
odor molecule is recognized as a different odor owing to 
a different combination code. The signaling process of 
the OB is the most important factor, but its exact func-
tional role remains uncertain [30, 31].

In 2015, Gschwend et  al. reported that neuronal pat-
tern separation in the OB improves odor discrimination 
[32]. They showed that a similar pattern of odor mol-
ecules induces a highly correlated input pattern in the 
OB. This indicates that pattern separation in the olfactory 
system acts as a driving force for sensory discrimination 
and learning. Wang et  al. developed an artificial neural 
network (ANN) based on the mechanism by which the 
olfactory system classifies odors [25]. They reproduced 
the olfactory system of a fly using machine learning (ML). 
ANNs, which are capable of performing complex tasks, 
provide a novel approach for modeling neural circuits 
[33, 34]. Neural activity patterns from the higher visual 
areas of the brains of monkeys that are viewing natural 
images resemble those of neural networks trained to clas-
sify many visual images [34]. Many other studies have 

applied the mechanisms of natural olfactory detection by 
incorporating the pattern recognition process into engi-
neering olfactory sensor technology.

Data processing of artificial olfactory sensor system
To imitate the olfactory recognition mechanism, sensor 
array technology that can transmit patterned signals for 
volatile organic compounds (VOCs) and data processing 
technology using artificial intelligence (AI) technology 
are essential. The multichannel sensor array functions 
as an olfactory receptor tissue and as the number of sig-
nal receptors increases, advanced signal classification 
through various patterns becomes possible. Therefore, it 
is necessary to introduce a systematic data analysis algo-
rithm for the processing of high-dimensional pattern 
data.

Typically, two algorithms are used to process data 
obtained from artificial olfactory sensors, namely sta-
tistical and intelligent model analyses. Statistical pat-
tern analysis methods include linear analysis, principal 
component analysis (PCA), linear discriminant analysis 
(LDA), and support vector machine (SVM). Intelligent 
model analysis includes ANNs, multilayer perceptron 
(MLP) and k-nearest networks (kNNs).

A multivariate analysis of the sensor arrays is required 
for specific chemical gases with mixed compositions. 
This analysis method is often used to visually distinguish 
between groups of the same sample in a PCA plot [35]. 
A PCA plot is a two-dimensional representation of the 
data, including the maximum variance of the data. An 
intelligent olfactory sensor can be implemented through 
advanced data processing techniques that use AI and ML 
using preprocessed data [11].

Zeng et  al. performed PCA on the pattern data of a 
multiparameter virtual sensor array (VSA) for the dis-
crimination of six VOCs. They found that two principal 
components could account for more than 97% of the 
accuracy [36]. PCA reduces redundancy within the sen-
sor sensitivities for each class and projects the sensitiv-
ity data orthogonally to several unrelated dimensions to 
identify the maximum variable component that can be 
used to classify groups of odorants. The six VOCs data-
sets projected onto the main plane identified distinct 
groups of each VOC. Lu et  al. performed PCA using 
a Quartz crystal microbalance (QCM) sensor for 15 
VOCs to observe the discrimination of VOCs. Two PCs 
accounted for 95% of the variance in the sensitivity data, 
and the predictions of the two PCs showed a clear dif-
ferentiation of VOCs [37]. PCA is mainly used to reduce 
high-dimensional data to low-dimensional data. An 
orthogonal transformation is used to transform highly 
correlated samples in high-dimensional space into low-
dimensional space (PCs) that are not linearly correlated. 
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When data are mapped to one axis, the data are linearly 
transformed into a new coordinate system such that the 
axis with the largest variance is placed as the first PC and 
the axis with the second largest variance as the second 
PC. This decomposition of sample differences into the 
components that best represent them provides several 
benefits for data analysis.

A supervised learning method is mainly used to estab-
lish a functional relationship between the measurement 
space and classification element. Many ML methods 
have been developed over the past few decades, includ-
ing partial least squares (PLS) regression, SVMs, ANNs, 
decision trees (DTs), and kNNs [38–42]. Among these, 
neural networks such as MLPs have been widely used 
[43]. ANNs are currently the most common applica-
tions of AI. Through these algorithms, it is possible to 
automatically detect patterns in data, predict or classify 
future data using undiscovered patterns, and derive new 
knowledge by collecting or extracting information from 
suitable data.

Statistical and artificial neural network-based nonlinear 
pattern recognition models based on LDA and orthogo-
nal discriminant analysis (ODA) have been applied to 
food contamination discrimination technology [44–48]. 
ANNs are statistical learning algorithms that are inspired 
by biological neural networks (particularly the brain in 
the central nervous system of animals) and are frequently 
used in ML and cognitive science. An ANN refers to an 
overall model in which artificial neurons (nodes) form a 
network through synaptic bonding. Through learning, 
the bonding strength of synapses change and develop 
problem-solving abilities [49].

ANNs rely on many inputs and are generally used to 
guess and approximate hidden functions. It is usually rep-
resented as an interconnection of neuronal systems that 
computes values from inputs and is adaptable, allowing 
ML tasks such as pattern recognition to be performed. 
Similar to other ML systems, learning from data-neural 
networks is used to solve a wide range of problems, such 
as computer vision and speech recognition, which are 
typically difficult to solve using rule-based programming 
[50].

An ANN is also a biomimetic technology and is used 
to classify and predict results based on the similarity and 
closeness among complex and nonlinear data [51]. Prob-
abilistic neural networks (PNNs), radial basis function 
networks (RBFNs), back-propagation neural networks 
(BPNNs), and SVMs have been used to classify VOCs 
[52–55]. An ANN is typically composed of an input 
layer, hidden layer, and decision (output) layer. The input 
layer accepts data patterns to transmit data to the hidden 
layer nodes. The hidden layer node performs a learning 
process to determine the data. In general, the higher the 

number of nodes in the hidden layer, the better the classi-
fication of complex input data achieved through training 
[56]. In the ANN learning process, an optimal weight-
ing process that connects the hidden and output layers is 
performed. The roles of step, momentum, quick propaga-
tion, delta bar delta, conjugate gradient, and Levenberg–
Marquardt (LM) are used for ANN training [57]. The LM 
method does not rely on the initial weights for network 
convergence and uses second-order gradients to allow 
the network to converge faster. Thus, the LM method 
is more stable, efficient, and faster in learning than 
backpropagation-based learning [58] More information 
related to material classification and identification using 
pattern recognition technology can be found in Karakaya 
et al. [59], Wasilewski et al. [60], .Tonacci et al. [61], and 
Sanaefar et al. [62].

Artificial olfactory sensor model based on natural olfactory 
recognition system
Because the artificial olfactory sensor system is capable 
of quantitative and qualitative analysis of chemical gases, 
it can be used in industrial fields that require regular 
monitoring for safety [63, 64]. The e-nose system is based 
on a chemical sensor unit that converts chemical infor-
mation into a digital signal, forming an array capable of 
providing a multi-dimensional response when it comes 
into contact with specific VOCs. To relate specific recog-
nition events to specific VOCs, multi-modal sensor array 
technology and multi-dimensional pattern recognition 
data processing technology are required.

Sensor arrays for e‑nose system
In artificial olfactory systems, various nanosensor tech-
nologies are used as units that make up the sensor array. 
Any sensor platform for which its array can form its own 
pattern is available. Figure  3 introduces various sen-
sor technologies that can be used as units of arrays that 
can form patterns. Available sensors include metal oxide 
(MO)-based electrochemical sensors, surface acoustic 
waves (SAW), conductive polymers (CPs), organic dye-
based colorimetric sensors, biomimetic biosensors, opti-
cal sensors, and mass spectrometry (MS) [62]. Table  1 
provides information on the sensor platforms that can 
be used as sensor array units. Further information on the 
sensor technology being used as an e-nose system can be 
found in Kim et al., Zheng et al., Jha et al., Nazemi et al., 
Feng et al., and Hangxun et al. [13, 65, 86–89].

Applications of artificial olfactory systems
From the aforementioned discussion, it is possible to 
build an artificial olfactory system that imitates the nat-
ural olfactory structure by combining gas sensing and 
data processing technologies. Artificial olfactory sensor 
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systems have been actively researched and developed. 
Table  2 introduces the current status of research on 
such e-noses, which are widely applied in various fields.

Artificial olfactory system applications in food science
There is a growing demand for fast and accurate qual-
ity testing of food. Currently, daily evaluation of food 

is conducted through visual inspection and subjec-
tive evaluation. Artificial olfactory sensor systems offer 
innovations in the non-destructive quality assessment 
of agricultural products and foods [113]. Taste recep-
tors produce a sense of smell in response to these types 
of foods based on volatile compounds. Flavors are mostly 
derived from VOCs [114]. Electronic nose technology, 

Fig. 3  Various sensor technologies that can be used as units for multi-array sensors [65–70]

Table 1  Characteristics of commonly used sensor units

Sensor type Strengths Weaknesses

Metal oxide (MO)-electrochemical sensors 
[71–73]

High sensitivity, target diversity, short response 
time, easy to dissociate, convenient replacement

High energy required, inaccurate readings (sensor 
drift), controlled environment, controlled setting 
(vacuum), streaky fabrication

Surface acoustic waves (SAW) [74, 75] High sensitivity, target diversity, short response 
time, diverse range of coatings, concise con‑
figuration

High cost, high energy required, complex circuitry, 
commercialization, controlled temperature, 
reproducibility

Conductive polymer (CP) [66, 67] High sensitivity, short response times, low cost, 
room temperature operation, diverse range of 
coatings

Low durability (weak), inaccurate readings (sensor 
drift), complex synthetic process

Organic dye-based colorimetric sensors [76, 77] Excellent intuition, small, no external power 
required, portable, convenient

Low sensitivity, complex manufacturing process

Biomimetic biosensors [78–82] Excellent intuition, small, no external power 
required, portable, convenient, high sensitivity, 
high selectivity, wide compatibility, eco-friendly

Lack of standardization, limited mass production

Optical sensors [83–85] Very high sensitivity, low energy consumption, 
individual response (compounds mixture analy‑
sis), quick response.

High cost, complex construction, difficult to make 
portable system

Mass spectroscopy (MS) [76, 77] Short response time, high sensitivity and stabil‑
ity, enables qualitative and quantitative analysis, 
universal detector

High cost, complex construction (spectrometer), 
response time, difficulty of field analysis
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which can analyze the composition of VOCs and identify 
specific types of aromatic chemicals, enables an objective 
assessment of food conditions.

Panigrahi et  al. verified the freshness of beef using a 
commercially available e-nose device (Cyranose-320). 

Dimensions were reduced by performing PCA on the sig-
nal transmitted by the sensor array and 100% discrimi-
nation between undamaged samples and those damaged 
by microorganisms [45]. Rajamaki et  al. conducted an 
experiment using an e-nose device to detect spoilage 

Table 2  Applications of gas discrimination using artificial olfactory sensors in various fields

Applications Contents Sensor unit Data process Reference

Food science Detection of beef freshness Cyranose-320™: MO-based 8 sen‑
sor arrays

Principal component analysis 
(PCA), linear discriminant analysis 
(LDA), quadratic discriminant 
analysis (QDA)

[45]

Quality assessment of modified-
atmosphere packaged poultry 
meat

MO-based 24 sensor array PCA, partial least squares (PLS), 
artificial neural network (ANN)

[90]

Contaminations in tomatoes EOS835 (Sacmilmola scarl, Italy): 
MO-based 6 sensor array

PCA, k-nearest network (kNN) [91]

Descriptive sensory analysis of 
aged cheddar cheese

Gas chromatography (GC)-based 
sensor array

PCA [92]

Portable electronic nose device to 
determine the freshness of Moroc‑
can sardines

MO-based 6 sensor arrays PCA, support vector machine 
(SVM)

[93]

Monitoring of growth of spoilage 
bacteria in milk

10 MO semiconductor field effect 
transistor (MOSFET) sensors

PLS [94]

Freshness monitoring of peach Structural colorimetric sensors 
array

Hierarchical classification analysis 
(HCA)

[95]

Banana ripening Functional bacteriophage-based 
colorimetric sensor array

HCA, PCA [80]

Environmental monitoring Automobile exhaust MO-based sensor array Back-propagation neural network 
(BPNN)

[96]

Physical discrimination of amine 
vapor mixtures

Polymer-based thin film transistor 
(TFT) sensor array

Extracting values from data curves [97]

BTX (Benzene, toluene, xylene) 
vapors in Air

SAW sensors PCA, probabilistic neural networks 
(PNN)

[98]

NOx urban pollution monitoring MO-based sensor array ANN [99]

Aromatic hazardous chemicals Functional phage-based colorimet‑
ric sensor array

ANN, HCA [78]

Hydrogen sulfide and nitrous oxide 
detection

MO sensor array PCA, discriminant factorial analysis 
(DFA)

[100]

Highly polluted river CP sensor array PCA [101]

Antibiotics pollution in water Biomimetic colorimetric sensor PCA, LDA [102]

Endocrine-disrupting chemicals 
detection

Biomimetic colorimetric sensor PCA, LDA [103]

Pharmaceutical chemicals discrimi‑
nation

Biomimetic colorimetric sensor HCA [104]

Diagnostics Breath diagnosis for lung cancer 
(LC) and lung disease

Quartz crystal microbalance (QCM) 
sensor array

Partial least squares discriminant 
analysis (PLS-DA)

[105]

LC, gastric cancer, asthma, and 
chronic obstructive pulmonary 
disease

Silicon nanowire sensors ANN [106]

Exhaled breath diagnosis for LC Graphene oxide sensor array ANN [107]

Chronic liver disease Bionote (Commercial e-nose 
devices) [108]

PLS-DA [109]

Chronic kidney disease MO-based 11 sensor arrays SVM [110]

LC Functional phage-based colorimet‑
ric sensor array

ANN [111]

Ventilator associated pneumonia MO sensors Logistic regression analysis [112]
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signals in packaged poultry meat at an early stage. Gas 
chromatography (GC) confirmed that the composition 
of hydrogen sulfide and dimethyl sulfide differed depend-
ing on the freshness of meat. The signal output from the 
sensor array was processed using PCA, PLS, and ANN, 
and similar classification results were obtained among 
the method [90]. Concina et  al. used an e-nose sen-
sor to determine microbial contamination of tomatoes. 
The composition of the VOCs mixture consisting of 
3-methyl-furan, dimethyl sulfide, acetone, ethanol, and 
3-methyl-1-butanol was classified using PCA and kNN 
[91]. Drake et al. performed a descriptive sensory analy-
sis of aged cheddar cheese using an e-nose equipped with 
an MS(Mass-spectrometer) detector. PCA was found to 
provide a simple chemical basis for distinguishing ched-
dar cheese flavors [92]. Barbri et al. proposed an e-nose 
model in the form of a MO-based sensor array to develop 
a portable device that can determine the freshness of 
Moroccan sardines [93]. PCA and SVMs results showed 
that the system was able to assess the freshness of sar-
dines stored at 4 °C. Haugen et al. performed a study on 
the detection and monitoring of the growth of spoilage 
bacteria in milk [94]. The composition of VOCs in milk 
generated by three putrefactive bacteria (Serratia marc-
escens, Serratia proteamacufans, and Pseudomonas 
putida) was elucidated using a 10 MO semiconduc-
tor field effect transistor (MOSFET) sensor array. They 
compared the gas profile measured by the e-nose with 
combined GC-MS analysis results and confirmed that 
the prediction was possible with an error of less than 
5%. Lee et al. produced an amino acid-based colorimet-
ric sensor array that could discriminate various VOCs 
[95]. They created a sensor array that could discriminate 
between six types of VOCs (Y-hexanolactone, 2-isopro-
pyl-4-methylthiazole, ethanol, acetone, ethyl acetate, and 
acetaldehyde) using a series comprising tryptophan and 
histidine residues. They could monitor the freshness of 
peaches using this sensor. Kim et  al. produced a sensor 
array using a colorimetric sensor based on functional 
bacteriophages and developed an artificial olfactory 
sensor model that could identify the ripening state of 
bananas with 95% accuracy [80]. Artificial olfactory sen-
sors are widely applied in fields that can quickly detect 
the condition of foods.

Artificial olfactory system applications in environmental 
monitoring
Electronic nose models are widely used in the field of 
environmental monitoring. Although humans can react 
to hazardous situations by recognizing odors, the natu-
ral olfactory system can easily tire [115, 116]. It is difficult 
to continuously measure bad odors in the field, making 
e-nose technology essential. Environmental monitoring 

technology requires 1) the ability to standardize VOCs 
mixtures, 2) signal transmission for non-specific chemi-
cal gas exposure, and 3) high sensitivity. Commercial 
environmental monitoring sensors are currently in lim-
ited use because they are lacking in many areas that need 
to be improved upon, such as high durability, repeat-
ability, standardization, and detection limits, to enable 
operation in poor environmental conditions [117–119]. 
Because environmental regulations have been strength-
ened and issues raised in recent decades, the demand 
for environmental monitoring technology is increasing 
rapidly.

Wang et al. developed a powerful vehicular e-nose sys-
tem for detecting automobile exhaust gases such as car-
bon monoxide and hydrocarbons [96]. An ANN-based 
gas pattern recognition method was used to improve the 
selectivity of the gas sensors and accurately discriminate 
the gas components. The classification of emitted gases 
was based on a momentum and adaptive learning rate 
BPNN, whose weights and biases were trained in advance 
and programmed in a microcontroller unit (MCU). The 
experimental results demonstrate that the system can not 
only effectively detect the individual components from 
their mixtures, but also monitor the risk level of each 
gas with sufficient accuracy. Liao et al. conducted a study 
on the physical identification of amine vapor mixtures 
using polythiophene gas sensor arrays. By varying the 
side chain of the polythiophene molecule and adjusting 
the thickness of the polythiophene films, size discrimina-
tion of amine vapors could be accomplished using small 
arrays of polythiophene transistors [97]. Matatagui et al. 
reported a SAW sensor-based e-nose device array that 
can identify and monitor benzene, toluene, and xylene 
in air [98]. They reduced the dimensions of the pattern 
data using PCA. PNN learning was performed based on 
the classification results of PC1, PC2, and PC3, and was 
repeated until all vectors were verified, showing 100% 
accurate classification. Lee et  al. developed an e-nose 
device that can detect harmful aromatic chemicals based 
on a neural network method [78]. Their neural pattern 
separation mimics the mammalian olfactory system with 
detection possibilities close to the K-9 level. A highly dis-
tinguishable detection rate at the atomic level resulted in 
a high selectivity rate of 97.5%.

Artificial olfactory system applications in diagnostics
Diagnosis through exhaled breath analysis, inspired by 
the traditional method of checking the disease state 
through the smell of the patient’s breath, is an emerg-
ing field of research as e-nose technology advances. Jun-
queira et  al. reported on a cancer diagnosis study using 
trained dogs [120]. Investigations of exhaled breath anal-
ysis mainly concern the diagnosis of respiratory diseases 
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such as lung cancer (LC), chronic obstructive pulmonary 
disease, and asthma [121, 122]. Because it is well known 
that various diseases affect metabolic mechanisms, moni-
toring VOCs composition changes in the exalted breath 
is expected to become widely used to diagnose various 
diseases [13, 123].

A sample-based diagnostic method, such as a patient’s 
blood or tissue, 1) is a cumbersome process, 2) requires 
a skilled operator due to a difficult protocol, 3) can be 
performed only in a facility such as a hospital, and 4) has 
long analysis times. However, disease diagnosis using 
breath analysis is user-friendly, non-invasive, and real-
time analysis is possible.

LC is the foremost target for breath diagnoses. Stud-
ies on the variation of VOCs occurring in the process of 
cancer cell culture were conducted by Moon et  al. and 
Thriumani et al. [79, 124]. Their findings indicate that the 
specific VOCs released from cancer cells can act as odor 
signatures and potentially be used for the non-invasive 
screening of LC using gas array sensor devices. Lee et al. 
published a study on the classification of exhaled breath 
from 31 patients with LC and 31 healthy subjects using 
an e-nose based on a phage colorimetric sensor [111]. 
With the help of deep learning and neural pattern separa-
tion, the e-nose achieved a diagnostic success rate of over 
75% and a classification success rate of over 86% for LC 
based on raw human breath data.

Hanson et al. conducted a study to predict the clinical 
pneumonia score using an e-nose. They aimed to deter-
mine whether exhaled breath analysis correlated with 
the clinical pneumonia score [125]. Exhaled gas was 
sampled from the expiratory limb of the ventilator in 
mechanically ventilated surgical intensive-care patients 
and assessed using an e-nose. The components of the 
clinical pneumonia score were concurrently recorded. 
The e-nose score showed a correlation with the clini-
cal pneumonia score. Amal et  al. collected 968 breath 
samples from 484 patients (including 99 with gastric 
cancer) and analyzed them through GC-MS and an 
e-nose array [126]. According to the GC-MS results, 
patients with cancer and those at high risk had dis-
tinctive breath-print compositions. Eight significant 
VOCs (p < 0.017) were detected in the exhaled breath. 
The nanoarray analysis made it possible to discriminate 
between patients with gastric cancer and the control 
group (OLGIM 0–IV) with 73% sensitivity, 98% speci-
ficity, and 92% accuracy.

Hakim et  al. conducted a head-and-neck cancer 
(HNC) diagnostic study using an e-nose device [127]. 
HNC is the eighth most common malignancy in the 
world. It is often diagnosed late because of the lack of 
screening methods, and complete remission is achieved 
in < 50% of patients. HNC patients often develop a 

second primary tumor that can affect the entire aer-
odigestive tract, necessitating lifelong follow-up. The 
e-nose could clearly distinguish between (i) HNC 
patients and healthy controls, (ii) LC patients and 
healthy controls, and (iii) HNC and LC patients.

Xu et  al. studied the feasibility of a nanomaterial-
based breath test to identify gastric cancer in patients 
with gastric complaints [128]. The models were insen-
sitive to the confounding factors tested. Chemical 
analysis revealed that five VOCs (2-propenenitrile, 
2-butoxy-ethanol, furfural, 6-methyl-5-hepten-2-one, 
and isoprene) were significantly elevated in patients 
with gastric cancer and/or peptic ulcers compared to 
those with less severe gastric conditions. The concen-
trations in both room air and breath samples were in 
the single ppb range, except in the case of isoprene. 
Upper digestive endoscopy with biopsy and histopatho-
logical evaluation of biopsy material is the standard 
method for diagnosing gastric cancer. However, this 
procedure may not be widely available for screening in 
the developing world, whereas endoscopy is frequently 
used without major clinical gain in developed coun-
tries. There is a high demand for a simple and non-
invasive test for screening individuals at increased risk 
that should undergo endoscopic examination.

Amal et  al. developed a diagnostic breath test that 
could distinguish between patients with malignant ovar-
ian tumors and those who were tumor-free [129]. The test 
used a nanoarray of sensors to measure VOCs; it showed 
good sensitivity (low false negatives) and 100% specificity 
(no false positives). This may lead to an inexpensive and 
disposable alternative for the early diagnosis of ovarian 
cancer. Because ovarian cancer is usually not diagnosed 
until it reaches an advanced stage, its mortality rate is 
very high. The current diagnostic tests are expensive and 
cumbersome, making widespread screening impractical, 
highlighting the need for a rapid analysis such as e-nose 
technology.

Conclusions
Herein, we reviewed artificial olfactory sensor technol-
ogy based on natural olfactory mechanisms. Configura-
tion technology for the engineering of artificial olfactory 
sensors was described. Compared to other sensory sys-
tems, the olfactory mechanism is the most undetermined 
as it is the most complex. Advances in computer and data 
processing technologies have led to the development of 
biomimetic olfactory sensing technology in the form of 
pattern recognition. ANNs based on biological recogni-
tion mechanisms have led to the development of artifi-
cial olfactory sensors. This statistical method enables 
the classification of a larger number of sensor arrays 
and the analysis of more complex data. Electronic nose 
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technology is a typical example of artificial olfactory sen-
sors. Sensor array units that act as olfactory receptors 
can be applied to various nanosensors. MO-based elec-
trochemical sensors, SAW, QMC, CPs, organic dye-based 
colorimetric sensors, biosensors, optical sensors, and 
MS devices are utilized as units that make up the sensor 
array. Each sensor platform has its advantages and disad-
vantages. However, an array can be tailored to meet the 
operating environment and performance requirements of 
the artificial olfactory sensor. The artificial olfactory sen-
sor system can be used to analyze the chemical composi-
tion and quantitative and qualitative levels of trace VOCs 
in a wide range of fields such as food quality and safety 
evaluation, environmental monitoring, and diagnosis. In 
particular, artificial olfactory sensor technologies related 
to diagnosis have recently been highlighted. Utilizing 
exhaled-breath analysis can lead to the development of 
efficient and reliable real-time inspection techniques. 
It has a high potential as a screening tool for early non-
invasive diagnosis. However, the current artificial olfac-
tory sensor technology has several limitations and there 
is limited commercialization owing to reliability and 
standardization issues. However, prospects for the devel-
opment of this technology are positive. Artificial olfac-
tory sensors are expected to be widely used in advanced 
pattern recognition and learning technologies, along with 
advanced sensor technology in the future. Through the 
integration of Internet of Things and artificial olfactory 
sensors technologies, it is expected that artificial olfac-
tory sensors that can be used in mobile wearable devices 
can permeate our daily lives.
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