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Abstract 

Bioactive glasses are a group of bioceramic materials that have extensive clinical applications. Their properties such as 
high biocompatibility, antimicrobial features, and bioactivity in the internal environment of the body have made them 
useful biomaterials in various fields of medicine and dentistry. There is a great variation in the main composition of 
these glasses and some of them whose medical usage has been approved by the US Food and Drug Administration 
(FDA) are called Bioglass. Bioactive glasses have appropriate biocompatibility with the body and they are similar to 
bone hydroxyapatite in terms of calcium and phosphate contents. Bioactive glasses are applied in different branches 
of dentistry like periodontics, orthodontics, endodontics, oral and maxillofacial surgery, esthetic and restorative den-
tistry. Also, some dental and oral care products have bioactive glasses in their compositions. Bioactive glasses have 
been used as dental implants in the human body in order to repair and replace damaged bones. Other applications of 
bioactive glasses in dentistry include their usage in periodontal disease, root canal treatments, maxillofacial surgeries, 
dental restorations, air abrasions, dental adhesives, enamel remineralization, and dentin hypersensitivity. Since the 
use of bioactive glasses in dentistry is widespread, there is a need to find methods and extensive resources to supply 
the required bioactive glasses. Various techniques have been identified for the production of bioactive glasses, and 
marine sponges have recently been considered as a rich source of it. Marine sponges are widely available and many 
species have been identified around the world, including the Persian Gulf. Marine sponges, as the simplest group of 
animals, produce different bioactive compounds that are used in a wide range of medical sciences. Numerous studies 
have shown the anti-tumor, anti-viral, anti-inflammatory, and antibiotic effects of these compounds. Furthermore, 
some species of marine sponges due to the mineral contents of their structural skeletons, which are made of biosilica, 
have been used for extracting bioactive glasses.
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Introduction
Over the past hundred years, investigations on mate-
rials used in dentistry have expanded dramatically [1]. 
Natural biomaterials such as collagen, fibrin, chitosan, 
hyaluronic acid, alginate, and agar as well as organic 
synthetic biomaterials such as polylactic acid (PLA), 

polyglycolic acid (PGA), poly lactide-co-glycolic acid 
(PLGA), and polycaprolactone (PCL), and on the other 
hand inorganic synthetic materials such as hydroxyapa-
tite (HA), beta-tricalcium phosphate (β TCP) and 
compositions of silicate and phosphate glasses have 
been used in the field of dental tissue engineering [2]. 
Recently, new researches in the field of biomaterials 
have focused on tissue engineering and tissue regenera-
tion [3]. Bioactive glass is one of the biomaterials that 
has revolutionized modern biomaterial-driven regen-
erative medicine by innovating applications in bio-
medicine, such as soft tissue repair and drug delivery 
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and also, cases of its clinical applications have also been 
identified [4].

The first bioactive glass was invented by Larry L. 
Hench in 1969 [5]. According to L. Hench’s studies 
[6], if a substance produces a biological response that 
leads to a bond between the substance and tissues, it 
can be classified as bioactive material. Bioactive glass is 
based on silicate and its structure is composed of three-
dimensional networks of silica when they are placed 
in the body they can be able to form strong chemical 
bonds with tissues, especially with bones [7]. Bioactive 
glasses dissolve when they are exposed to body fluids 
and then by forming the apatite crystals on their sur-
face, they gain the ability to chemically bond with the 
apatite crystals which are present in bone and tooth tis-
sues [8]. Bioactive glass has high biocompatibility and 
is also a type of ceramic presenting some properties of 
ceramics [9]. Ceramics are brittle, inorganic, and non-
metallic biomaterials composed of metal-oxygen ionic 
bonds, and they are poor thermal conductors because 
they have no free electrons in their structure to transfer 
heat or electricity [9]. In addition, bioactive glass has 
several attractive properties including biocompatibil-
ity and antimicrobial properties that make it a suitable 
material for use as a scaffold in tissue engineering [10].

Nowadays, various biomaterials have been obtained 
from marine resources and attention to the seas as 
an accessible and natural source is increasing [11]. 
More than 25,000 biologically-active compounds have 
been identified from marine habitats [12, 13]. Marine 
sponges are simple invertebrate animals that are 
known as chemical factories in the sea because they 
can produce numerous different chemical compounds 
in water [14, 15]. Different compounds of various spe-
cies of marine sponges have been studied so far [16]. 
Although the bioactive compounds of marine sponges 
show diverse chemical properties, they have great 
potential for application in the medical sciences [14]. 
The bioactive compounds of marine sponges are used 
in a wide range of treatments due to their antitumor, 
antiviral, anti-inflammatory, and antibiotic effects [17]. 
One of the prominent and distinguished features of the 
marine sponges is their ability to produce amorphous 
inorganic skeletal elements from hydrated silica (silica 
spicule) or calcium carbonate (calcareous spicule) [18]. 
In the skeleton of most sponges, there are silica spic-
ules that stabilize the animal’s body structure and also 
play a defensive role against predators [19]. Marine 
sponges have been used in the production of bioactive 
glasses due to their mineral components such as bio-
silica [17, 20]. Marine sponges with silica spicules are 
found in the Persian Gulf [21]. These sponges can be 
considered as a suitable source for the production of 

bioactive glasses which can be used in various fields of 
dentistry.

Bioactive glasses and their chemical structures
Bioactive glasses have different types according to their 
constituents [22]. There are many variations in the main 
composition of these glasses, some of them are approved 
by the US Food and Drug Administration (FDA) for ther-
apeutic applications and they are known as Bioglass [4]. 
For example, Bioglass 45S5 and S53P4 for clinical appli-
cations are approved by the FDA [23]. Bioactive glasses 
have good biocompatibility properties and are similar to 
bone hydroxyapatite in terms of calcium and phosphate 
contents [24]. Bioactive glasses make it possible to bond 
and integrate with bone tissues by forming a layer of 
silica gel which stimulates the proliferation and differen-
tiation of osteoblast cells and initiates the synthesis and 
deposition of organic bone matrix [25]. Therefore, bio-
active glasses are widely used in medicine and dentistry 
[22]. For example, the first clinical application of bioac-
tive glass was reported after applying Bioglass 45S5 for 
the treatment of conductive hearing loss by reconstruct-
ing the bony structures of the middle ear [26]. Up to 
now, more than 1.5 million people worldwide have been 
treated with Bioglass 45S5 [27].

There are three types of bioactive glasses, including 
silicate-based glass  (SiO2), phosphate-based glass  (P2O5), 
and borate-based glass  (B2O3) [9]. The main formula-
tion commercially is called Bioglass 45S5 which contains 
45%  SiO2, 24.5%  Na2O, 24.5% CaO, and 6%  P2O5 [28]. In 
addition, bioactive glasses may contain well-known bio-
compatible and bioactive minerals such as fluorapatite, 
wollastonite, diopside, and tricalcium phosphate [29, 30]. 
For example, an alkali-free (Na-free) bioactive glass with 
a formulation of 70% diopside, 10% fluorapatite, and 20% 
tricalcium phosphate is commercially known as FastOs 
BG [30]. Much more researches have been focused on 
changing the composition of Bioglass 45S5 by adding or 
removing ions to make the materials more compatible 
for different clinical applications [8]. Recently a novel 
crystallized bioactive glass-ceramic with the formula-
tion of  SiO2 48.5%,  Na2O 23.75%, CaO 23.75% and  P2O5 
4.0% has been presented and is called Biosilicate which 
has several applications in medical sciences [31]. Table 1 
shows the chemical composition of bioactive glasses.

Application of bioactive glasses in dentistry
Bioactive glasses by having different advantages includ-
ing having the ability to support the structure of biolog-
ical tissues, being good scaffolds, and also preventing 
the growth of bacteria become so useful in different 
fields of dentistry [9]. Various applications of bioactive 
glasses in dentistry are mentioned in the following and 
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briefly brought in Fig.  1. Also, some of the bioactive 
glasses used in dentistry are listed in Table 2.

Despite the widespread use of bioactive glass in den-
tistry, there are challenges to their widespread use. 
For example, repairing bone defects in orthopedic 
and dental surgery remains a major challenge. The 
mechanical limitations of existing glass scaffolding, 
along with related challenges and strategies for further 
improvement, need further study. In addition, emerg-
ing applications of bioactive glasses in contact with 
soft tissues require relative revision of biomechanical 

issues inorder to match the adaptation of delicate col-
lagen tissues [49].

Application in oral care products
Bioactive glasses have been used in various dental prod-
ucts especially toothpaste [33, 50]. It has been observed 
that bioactive glasses are useful in the formulation of 
toothpaste because they can release antibacterial agents, 
stimulate remineralization and reduce hypersensitiza-
tion [24]. One of the bioactive glasses is called NovaMin 
which is used as an active ingredient in toothpaste to 

Table 1 Bioactive glasses chemical composition

Bioactive glasses SiO2 Na2O CaO P2O5 K2O MgO B2O3 Al2O3 ZnO SrO CaF2

45S5 45 24.5 24.5 6 – – – – – – –

42S5 42.1 26.3 29 2.6 – – – – – – –

S53P4 53 23 20 4 – – – – – – –

55S4 52.1 21.5 23.8 2.6 – – – – – – –

58S 60 0 36 4 – – – – – – –

70S30C 70 30 0 0 – – – – – – –

45S5F 45 24.5 12.25 6 – – – – – – 12.5

40S5B5 40 24.5 24.5 6 – – 5 – – – –

6P44 44.2 17 18 6 4.6 10.2 – – – – –

6P50 49.8 15.5 15.6 6 4.2 8.9 – – – – –

6P55 54.5 12 15 6 4 8.5 – – – – –

6P61 61.1 10.3 12.6 6 2.8 7.2 – – – – –

H12 7.5 8 40 2.5 – – 40 2 – – –

B18 6.5 12.5 35 1 – – 41.5 3.5 – – –

0Sr 49.96 3.30 32.62 1.07 3.30 7.25 – – 3 – –

10Sr 49.96 3.30 29.36 1.07 7.25 – – 3 3.26 –

50Sr 49.96 3.30 16.31 1.07 3.30 7.25 – – 3 16.31 –

100Sr 49.96 3.30 1.07 3.30 7.25 – – 3 32.62 –

QM5 41.7 5.2 36.31 4.7 1 7.82 – – 3.13 – –

QM8 41.7 5.2 30 4.7 1 14 – – 3.13 – –

QM10 41.7 5.2 26 4.7 1 18 – – 3.13 – –

Fig. 1 Application of bioactive glasses in dentistry
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increase remineralization and reduce tooth sensitiv-
ity [51]. NovaMin (calcium-sodium-phosphate silicate) 
can release calcium and phosphate ions. These ions raise 
the pH and lead to the deposit of calcium phosphate and 
its conversion to hydroxyapatite [52]. NovaMin in com-
parison to other calcium-based products which shows 
an initial burst of calcium provides continuous release 
of calcium [53]. BiominF is another commercial product 
of bioactive glass which includes fluoride and phosphate 
and induces the formation of fluorapatite (FAP) [54]. In 
2021, the first toothpaste containing bioglass and fluoride 
received FDA approval [55]. This toothpaste can improve 
acid-resistant fluorapatite on the tooth surface and inside 
exposed dentine tubules by controlling the release of cal-
cium, phosphate, and fluoride ions gradually for many 
hours after brushing [55].

Application in periodontics and dental implants
Periodontitis is a common chronic multifactorial inflam-
matory disease of the periodontium that can cause 
clinical attachment loss, alveolar bone loss, periodontal 
pocket, and gingival bleeding because of loss of peri-
odontal tissue support [56]. This condition can also lead 
to alveolar bone resorption and loosening of teeth [57]. 
Periodontitis can cause inflammation developments 
around dental implants which ultimately increases the 
risk of implant detachment and treatment failure [58]. 
To improve the prognosis of dental implants, reconstruc-
tion of bone defects is essential [59]. Research on dogs 
has shown that bioactive glass particles have the ability to 
treat periodontal defects by increasing bone mineraliza-
tion [60]. One of the bioactive glasses that affects bone 
defects is PerioGlas which has a similar formulation to 
Bioglass 45S5 and is widely used as a grafting material 
in bone grafts to regenerate periodontal osseous defects 
[61, 62]. PerioGlas contains 90 to 710 μm bioactive glass 

particles, so it can penetrate into bone defects and stimu-
late bone regeneration in periodontal surgeries [63, 64]. 
The results of bone biopsies after using PerioGlas gran-
ules as fillers in the site of tooth extraction showed new 
bone augmentation and confirmed good bioactivity of 
PerioGlas and also after a two-year clinical follow-up suc-
cessful loading of the implants and evidence for implant 
stability were shown [65]. Also, PerioGlas reduced prob-
ing depth significantly and gained clinical attachment 
level (CAL) in periodontal intrabony defects [66]. So that 
if the amount of the harvested bone is not sufficient for 
the treatment of moderate to severe chronic periodon-
titis the mixture of autogenous bone and PerioGlas can 
be effective because it had similar clinical attachment 
gain to autogenous graft [66]. PerioGlas as a bioactive 
alloplast was well-tolerated by the gingival tissues [67]. 
Radiographs of each periodontal osseous defect and 
measuring of defect depth from the alveolar crest to the 
base of the bone defects using a Williams graduated peri-
odontal stent demonstrated the significant improvement 
in bone fill when the bioactive glass is used [67].

Additionally to the bone grafting application of bioac-
tive glasses, silica-based bioactive glasses have been used 
for covering implants, too [68]. The use of nanotechnol-
ogy in the synthesis of bioactive glass has enhanced its 
application as a coating material on the surfaces of dental 
implants [69]. A wide range of implants are made of tita-
nium and in some studies, bioactive glass has been used 
on titanium implants [70]. Covering implants with bio-
active glass prevents infection and inflammation around 
the implants due to their antimicrobial properties [71]. 
The bioactive glasses increase titanium implants bond 
to the bone and promote their bioinert nature of them 
so that they reduce the total time of treatment [72–74]. 
In  vivo, animal studies demonstrate that the titanium 
implants coated with bioactive glasses show significantly 

Table 2 Specifications of some bioactive glasses used in dentistry

Bioactive 
glass brand 
name

properties composition Study type Ref.

NovaMin release antibacterial agents, have anti-gingivitis effect, 
stimulate remineralization and reduce hypersensitiza-
tion

amorphous calcium sodium phosphosilicate (CSPS)/ 
45% SiO2, 24.5% Na2O, 24.5% CaO and 6% P2O5/ 
CaNaO6PSi [32]

In vitro
/Clinical trial

[33–35]
[36, 37]

BiominF Remineralization of artificial carious lesions, Dentin 
tubule occlusion

5% Fluorocalcium phosphosilicate bioactive glass In vitro
/Clinical trial

[38–41]

PerioGlas grafting material in bone grafts to regenerate peri-
odontal osseous defects

calcium phospho-silicate bioactive glass In vitro
/Clinical trial

[42–45]

QMAT3 preventing the formation of white spot lesions & 
stronger antimicrobial and remineralizing effects

fluoride-containing bioactive glass In vitro [46, 47]

45S5 removing residual orthodontic adhesive, a pulp cap-
ping material, Bio-Gutta, synthetic bone graft

45%  SiO2, 6%  P2O5, 24.5% CaO, and 24.5%  Na2O In vitro
/Clinical trial

[24, 48]
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more osseointegration than control dental implants [75, 
76]. A clinical trial was performed on 31 patients to eval-
uate and compare the behavior of hydroxyapatite and 
bioactive glass-coated implants (62 implants) in bone tis-
sue after implantation [74]. The results showed bioactive 
glass coating materials were biocompatible and nontoxic 
and bioactive glass-coated implants were as equally suc-
cessful as hydroxyapatite in achieving osseointegration 
and supporting final restorations. so that glass-coated 
implants were a viable alternative coating material for 
dental implants, which may allow for wider case selection 
criteria together with improved integration rates even in 
the more challenging medically compromised and osteo-
porotic patients [74].

Application in orthodontics
In orthodontics, dental adhesives help to attach or bond 
a compound to another substance such as attachment 
of dental composites or orthodontic brackets to the 
natural tissue of the teeth [77]. The composite resin is 
hydrophobe and the tooth surface is hydrophile but the 
bonding of dental resin composite overcomes it. Thus, 
the adhesive acts as an interface between the two mate-
rials [77]. Adhesion of orthodontic brackets can make 
favorable conditions for the presence of bacteria which 
may lead to demineralization of the tooth and the forma-
tion of white spot lesions (WSLs) [77]. To prevent such 
conditions oral hygiene maintenance, regular and cor-
rect brushing, and use of fluoride toothpaste and mouth-
washes are recommended [78]. Bioactive glasses have the 
ability to remineralize these white spot lesions [79]. Based 
on laboratory-based findings, the remineralization effects 
of bioactive glasses can be compared with topical fluoride 
and milk protein-derived casein phosphopeptide-amor-
phous calcium phosphate (CPP-ACP). These findings 
show that bioactive glasses enhance enamel reminerali-
zation more effectively and faster. However, clinical trials 
are needed to confirm their effectiveness [80]. One study 
found that orthodontic adhesives with bioactive glass and 
fluoride enhance the strength of apatite structure which 
may play a clinical role in preventing the formation of 
white spot lesions [24]. Another study found that ortho-
dontic bonding agents containing bioactive glasses with 
silver or zinc elements have stronger antimicrobial and 
remineralizing effects compared to conventional ortho-
dontic adhesives and the demineralization process after 
the pH cycling occurs at 200 to 300 μm away from ortho-
dontic brackets [81].

The most important enamel damage due to orthodon-
tic treatment occurs in removing the residual orthodon-
tic adhesive after the operation. Slow-speed tungsten 
carbide is commonly used for this purpose [82]. QMAT3 
is a novel bioactive glass. In one study, tungsten carbide 

bur, QMAT3-air-abrasion, and Bioglass 45S5-air-abra-
sion were examined in vitro to evaluate enamel damage 
during the processes of removing residual orthodontic 
adhesive. The results show that QMAT3 bioactive glass 
has minimal enamel damage in comparison with Bioglass 
45S5 air abrasion and tungsten carbide bur. Therefore, 
QMAT3 seems to offer a conservative approach for ortho-
dontic adhesive removal [82].

Application in endodontics
Bioactive glasses have also been used in root canal treat-
ments [83, 84]. In dental pulp disorders, various treat-
ment options such as pulpectomy, pulpotomy, and pulp 
capping are present and the materials that can be used 
in these treatments will play a very effective role in the 
prognosis of teeth and the success of the treatment [85]. 
In a study on rats, a novel bioactive glass was used as a 
pulp capping material after direct pulp capping. Then, 
results showed that bioactive glass stimulated the forma-
tion of heavy dentin bridges with inflammatory reactions 
similar to mineral trioxide aggregate (MTA) [86].

When microorganisms reach the pulp cavity, root canal 
treatment is prescribed in which it is necessary to use a 
root filler to prevent bacterial leakage as well as create a 
strong sealing [87, 88]. Gutta-percha in combination with 
Bioglass 45S5 (Bio-Gutta) can be used as an alternative to 
conventional gutta-percha in root canal treatments. Bio-
Gutta can bond to dentin walls does not require any seal-
ers and is also a biocompatible material [89, 90].

Also, bioactive glass can be used as a disinfectant 
because it has antimicrobial effects due to increasing the 
pH of an aqueous environment and calcium levels [91]. 
Bioglasses can act as topical root disinfectants in endo-
dontics and have no effect on dentin stability [92].

Application in oral and maxillofacial surgery
The application of bioactive glass in maxillofa-
cial surgeries compared to other calcium phosphate 
compounds such as hydroxyapatite and tricalcium 
phosphate increases bone formation both qualitatively 
and quantitatively and more rapidly [93]. Bioglass was 
approved by the US Food and Drug Administration in 
2005 as a bone stimulant [94]. Bioglass has been used 
as a synthetic bone graft under the commercial names 
Novabone in orthopedics and Perioglass in maxillofa-
cial surgeries [95, 96]. In vitro research has shown that 
bioactive glass can cause bone regeneration by having 
effects on bone stimulation [97].

Various commercial products of bioactive glasses 
including Bioglass 45S5, Biogran, 70S30C bioactive 
glass, BonAlive, and StronBone are mainly used in oral 
and maxillofacial surgeries. Biogran is widely used to 
treat maxillofacial injuries [98]. A clinical study on about 
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58 cases showed that Bioglass 45S5 can be used as sec-
ondary alveolar bone grafting in patients with clefts lip 
and palate [99]. These procedures are commonly per-
formed with iliac crest bone harvesting which has har-
vesting morbidity [99]. So using Bioglass 45S5 as an 
acceptable alternative to iliac crest bone harvesting can 
reduce harvesting morbidity and simplifies the surgery 
procedure [99]. One study was done on Biogran effects 
on volumetric changes and the new bone microarchitec-
ture in human maxillary sinuses augmentation [100]. In 
this study, it was demonstrated that the addition of 50% 
bioactive glass to autogenous bone graft decreased the 
resorption volume and improved the microarchitecture 
of the graft [100]. Therefore, when low amounts of bone 
tissue are available for sinus augmentation this mixture 
of autogenous bone and Biogran particles seems a prom-
ising alternative to the autogenous bone only [101]. The 
70S30C bioactive glass with formulations of 70%  SiO2 
and 30% CaO is effective in bone regeneration and can 
be used as a scaffold in bone grafting [102]. BonAlive is 
another type of bioactive glass is used to treat large inju-
ries such as mandibular, orbital floor and, mastoid frac-
tures [103, 104]. StronBone is another bioactive glass 
containing SrO which is used clinically to reduce bone 
resorption [105]. Bioactive glass can be used as a scaf-
fold for stem cells, too. Using bioactive glass scaffolds 
for adipose-derived stem cells in order to treat cranio-
maxillofacial hard-tissue defects at anatomically differ-
ent sites, including frontal sinus, cranial bone, mandible, 
and nasal septum showed successful integration of the 
construct to the surrounding skeleton [106].

Application in esthetic and restorative dentistry
Dentin hypersensitivity is characterized by short-term 
and severe toothache to thermal, chemical, or tactile 
stimuli. The most accepted theory for the cause of pain 
due to this dentin hypersensitivity is the hydrodynamic 
theory in which stimuli cause fluid to move in the den-
tinal tubules and after that, the mechanoreceptors which 
are near the pulp, stimulate the nerve endings of Aδ 
fibers resulting in sharp pain [107, 108]. According to 
hydrodynamic theory, dentin hypersensitivity pain can 
be reduced by blocking nerve endings or by sealing den-
tinal tubules [109, 110]. Bioactive glasses can relieve pain 
during dentin hypersensitivity by binding to collagen fib-
ers and depositing hydroxyapatite in order to block den-
tin tubules [111]. PerioGlas tends to block dentin tubules 
and reduce dentin tenderness pain by bonding tightly to 
collagen [112].

The tooth preparation for composite restorations leads 
to forming a smear layer including tooth tissue debris 
as well as bacteria on the tooth surface. The smear layer 
can occlude the dentinal tubule, so it should be removed 

in order to enhance better bonding of the resin compo-
nents. Acid-etching is performed to remove the smear 
layer and expose the dentinal tubules for this purpose. 
However, the acid-etching process activates the matrix 
metalloproteinases (MMPs) which destroy the collagen 
network of dentin and can cause microleakage [113–
116]. Bonding systems containing bioactive glass in com-
parison with bonding systems without bioactive glass can 
reduce microleakages by remineralizing the mineral-defi-
cient areas and increasing the modulus of elasticity and 
hardness properties at the dentin interface [117].

Biosilicate is another bioactive glass. In a clinical study, 
the effectiveness of Biosilicate in the treatment of den-
tin hypersensitivity was confirmed over a period of 6 
months [31]. In fact, the particles of Biosilicate in con-
tact with dentin reacts with the tissue inside the dentinal 
tubules and lead to dentinal occlusion by hydroxyapatite, 
thus creating a stronger bond [31]. Another study also 
showed that the use of suspension of Biosilicate micro-
particles on dentin increases the bond strength of the 
adhesive system [118].

The role of complementary ions in increasing 
the efficiency of bioactive glasses in dentistry
Bioactive glasses have good strength, stiffness, and hard-
ness but like other glasses, they are brittle and cannot 
be used in load-bearing areas [9]. Adding ions such as 
strontium, zinc, phosphorus, fluoride, cobalt, and silver 
can affect the different properties of bioactive glasses. 
Improving the angiogenesis with the addition of cobalt 
in bone grafting and increasing antimicrobial prop-
erties with the addition of silver have been observed 
[119, 120]. The addition of fluoride can provide numer-
ous benefits to bioactive glasses and ceramics [121]. 
Fluoride decreases tooth decay by preventing deminer-
alization of enamel and dentin and also increases remin-
eralization and inhibits bacterial enzymes [122]. Fluoride 
is able to form fluorapatite (FAP) instead of carbonated 
hydroxyapatite and fluorapatite is more resistant to acid. 
Therefore, adding fluoride to bioactive glass can improve 
oral health [123]. Phosphate can be present as orthophos-
phate in bioactive glass [124]. Increasing the amount of 
 P2O5 and other cations in fluoride-containing glasses 
helps to maintain network connections and increase the 
formation of fluorapatite [54]. This kind of bioactive glass 
is more desirable for clinical applications in dentistry 
[54]. The strontium is a bone-seeking agent similar to cal-
cium and it is found naturally in the liver, physiological 
fluids, muscles, and bones [125]. The strontium-contain-
ing bioactive glass increases osteoblast proliferation and 
decreases osteoclast activity in cell culturing [126]. Zinc 
can improve the bond between glass and bone [127].
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Bioactive glass extraction from marine sponges
Considering the different applications of bioactive glass 
in different fields of dentistry mentioned in the previous 
sections, it is important to know how to obtain this mate-
rial and find natural, abundant, and available sources of 
it. So far, various methods for extracting bioactive glass 
have been introduced. The melt quenching technique has 
been used to prepare bioactive glasses traditionally [128]. 
In the melt quenching process, high temperature com-
monly above 1000 °C is needed in order to melt ingre-
dients, and after that rapidly quenched for freezing and 
fabricating the atomic structure [129]. However, the melt 
quenching technique provides high mechanical proper-
ties but is not able to make porous scaffolds, and also the 
high temperatures reduce bioactivity of the glasses [129]. 
Heat treatment techniques can overcome some limita-
tions of melt quenching. For example, it can reduce ther-
momechanical stresses due to rapid cooling or fabricating 
porous scaffolds but it reduces bioactivity, too [130]. An 
alternative technique for bioactive glass synthesis is the 
sol-gel technique that uses hydrolysis and condensation 
reactions with low-temperature heat treatments [131]. In 
this way, it will be possible to produce a wide variety of 
glass compositions and shapes also having glasses with 
higher porosity [3]. Since 2006, the foam replica method 
has been used to produce bioactive glass scaffold that is 
an affordable, relatively easy, and effective technique for 
the development of highly porous and interconnected 3D 
scaffolds [132].

Natural marine sponges by having a high intercon-
nected porous structure, the result of their evolution for 
1000 years in water filtration can be used as sacrificial 
templates in the foam replica method to achieve supe-
rior mechanical properties [133]. Marine sponges by 
having various compounds such as biosilica, polyphos-
phate, and spongin are considered to be used in tissue 
engineering and reconstructive medicine [17]. Marine 
sponges are considered to be the earliest multicellular 
animals that exist at least since the late Proterozoic [134, 
135]. Marine sponges are known as the members of the 
phylum Porifera, and they live in the oceans for about 
580 million years and also more than 15, 000 species of 
them have been identified so far [136]. The sponges are 
made of an extracellular matrix containing fibrillar col-
lagen, cells, and skeletal components, and this matrix is 
surrounded by a single-celled epithelial layer called pina-
coderm [17]. Marine sponges have four classes and three 
of them, which contain more than 90% of the species, 
produce silica spicules. These spicules are different in the 
number of axis of symmetry [18]. Marine sponges natu-
rally used biosilica for their spicule formation so that bio-
silica concentration is high in sponges [137]. Biosilica is 
enzymatically isolated from silicatein proteins of siliceous 

sponges [138, 139]. Sponges are the only organisms that 
can polymerize silica enzymatically and produce large 
siliceous spicules [140]. In 2021, Dudik et  al. succeeded 
to isolated biosilica from five different Atlantic deep-
sea sponges Geodia atlantica, Geodia barretti, Stelletta 
normani, Axinella infundibuliformis, and Phakellia ven-
tilabrum [141].

In fact, the skeletons of sponges include inorganic spic-
ules which are composed of non-crystalline hydrated 
amorphous silica  (SiO2 /  H2O) in the classes of Demos-
pongiae, Homoscleromorpha, and Hexactinellida and 
calcium carbonate  (CaCO3) in the class Calcarea [142–
145]. So far, various sea sponges have been identified 
around the world, and a list of known species of Persian 
Gulf sponges is given in Table  3. As shown in Table  3, 
several species of the class Demospongiae and one spe-
cies of the class Homoscleromorpha are present in the 
Persian Gulf. Nowadays, different biomaterials with oste-
ogenic effects are demonstrated but natural-originated 
biomaterials compared to synthetic biomaterials are the 
better choice because they are more biocompatible and 
provide a more appropriate surface for cell attachment 
and growth [137, 209–211].

Recently, Kaya et  al. [20] extracted natural bioactive 
glass microspheres from spicules of marine sponge 
Geodia macandrewii. In the first step of bioactive glass 
extraction from the sponge, non-silicate minerals in the 
sponge structure should remove so that the samples are 
treated with HCl (2 M) aqueous solution at room tem-
perature for 2 hours. Then the samples are washed with 
distilled water using Whatman filter paper to reach the 
neutral pH. At this stage, minerals and other similar 
substances are removed from the sponge samples. In 
the second step, the samples are placed in NaOH (2 M) 
aqueous solution in the reflux system at a temperature 
of 100 °C for 2 hours. After that, the samples are washed 
again with distilled water to reach a neutral pH. This 
basic hydrolysis method removes proteins and other 
similar substances. In the third step, in order to decol-
orize and depigmentation sponge samples are treated 
with 10% ethyl alcohol solution for 1 hour at room tem-
perature to remove pigments and then washed with 
distilled water to reach a neutral pH. This procedure 
removes any pigments or similar structures that may 
remain in the resulting samples. After these steps, bio-
silica fibers and sterraster structures of sponge samples 
are obtained. The glass beads are placed in hydrofluo-
ric acid solutions (v/v) 20–40% at room temperature 
for 20 minutes and then washed with distilled water 
until they reach a neutral pH. Finally, the samples are 
dried by gradually increasing the temperature from 25 
to 100 °C. Exposure to hydrofluoric acid leads to the 
surface abrasion of the beads and eventually, porous 
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Table 3 Known species of the Persian Gulf sponges

Class Subclass Species References

Calcarea Calcaronea Grantia sp [146]

Calcinea Clathrina sp [146]

Leucetta sp [146–150]

Demospongiae Heteroscleromorpha Aaptos sp [151]

Agelas dilatata [152]

Agelas sp [153, 154]

Amphimedon viridis [155–157]

Axinella sinoxea [136, 158–166]

Callyspongia (Callyspongia) fallax [155]

Callyspongia (Callyspongia) siphonella [16, 150, 167, 168]

Callyspongia clavata [16, 147, 148, 167]

Callyspongia sp [148, 149, 155, 167, 169]

Callyspongia vasseli [147, 148]

Callyspongia sp [170]

Chalinula qatari [171]

Ciocalypta sp [172, 173]

Clathria (Microciona) mima [151]

Clathria sp [151, 174]

Cliona celata [175]

Cliona dioryssa [155, 169]

Cliona mucronata [176]

Cliona sp [146, 177]

Clionaopsis platei [178]

Cliothosa sp [146]

Dercitus (Halinastra) sp [176]

Dictyonella sp [179]

Gelliodes carnosa [148, 180, 181]

Gelliodes incrustans [150]

Gelliodes nossibea [182]

Gelliodes sp [146, 149, 182]

Gelliodes wilsoni [169]

Halichondria (Halichondria) panicea [151]

Halichondria sp [173, 183]

Haliclona [184]

Haliclona (Gellius) toxia [178]

Haliclona (Haliclona) oculata [185, 186]

Haliclona (Haliclona) simulans [185, 187, 188]

Haliclona (Haliclona) violacea [161, 162]

Haliclona (Reniera) cinerea [155]

Haliclona (Reniera) tubifera [161, 162]

Haliclona (Rhizoniera) rosea [155]

Haliclona (Soestella) caerulea [152, 178, 189]

Haliclona sp [21, 147, 154, 159, 169, 183, 190, 191]

Hemiasterella bouilloni [21, 183]

Iophon laevistylus [192]

Iophon sp [164]

Iotrochota sp [178]

Neopetrosia tuberosa [148]

Niphates furcata [16, 152, 167, 175, 193]
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biosilica beads are achieved (Fig.  2) [20]. Porous bio-
silica beads have been shown to be bioactive, and they 
form hydroxyapatite when exposed to body fluids [20]. 
This example clearly demonstrates that it is possible 
to extract bioactive glass components from marine 
sponges and sponges can be used as a cheap and rich 
natural source of bioactive glass.

Conclusions
Since bioactive glasses have a wide range of applica-
tions in different fields of dentistry, finding an available 
and inexpensive resource of bioactive glass is important. 
Many species of marine sponges have been identified 
and available in the Persian Gulf which produces vari-
ous types of compounds. Recent studies have shown that 
marine sponges can be used to produce bioactive glasses 

Table 3 (continued)

Class Subclass Species References

Niphates sp [21, 146, 149, 150, 154, 159, 183]

Pachychalina sp [194]

Pione carpenteri [195]

Pione margaritiferae [195]

Pione vastifica [175, 195]

Pseudosuberites mollis [169]

Siphonochalina sp [155]

Spheciospongia inconstans [182]

Stellettinopsis solida [21, 183]

Suberites diversicolor [173]

Suberites luna [171]

Suberites sp [146, 149]

Tedania (Tedania) sp [146, 149]

Terpios viridis [148]

Keratosa Aplysilla sp [146]

Dictyoceratida sp [173]

Dysidea avara [158, 159, 161, 162, 164, 196–199]

Dysidea cinerea [147, 148]

Dysidea fragilis [151]

Dysidea pallescens [164, 193, 200]

Dysidea sp [146, 149, 150, 168, 201, 202]

Euryspongia sp [168]

Fascaplysinopsis reticulata [16, 167]

Hyattella sp [203]

Hyrtios erectus [147, 148]

Ircinia echinata [147, 148, 161, 162, 164, 182]

Ircinia mutans [161, 204–207]

Ircinia ramosa [173]

Ircinia sp [146, 151, 152, 154, 164, 178]

Ircinia strobilina [187]

Psammocinia sp [203]

Spongia (Spongia) arabica [148]

Spongia (Spongia) officinalis [151, 169]

Verongimorpha Chondrilla australiensis [21, 178, 183, 208]

Chondrilla nucula [151, 178]

Chondrilla sp [146, 173]

Hexadella sp [146]

Pseudoceratina arabica [173]

Homoscleromorpha Oscarella sp [146]



Page 10 of 15Jafari et al. Biomaterials Research           (2022) 26:31 

due to the presence of minerals in their structural skel-
etons, which are made of biosilica. Therefore, marine 
sponges can be scientifically and economically good 
choices for extracting bioactive glass. So by finding new 
methods and sources of bioactive glass it would be pos-
sible to enhance their applications in dentistry.
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