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to enhance the osseointegration and reduction 
of bacterial colonization: a review
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Abstract 

The use of orthopedic implants in surgical technology has fostered restoration of physiological functions. Along with 
successful treatment, orthopedic implants suffer from various complications and fail to offer functions correspondent 
to native physiology. The major problems include aseptic and septic loosening due to bone nonunion and implant 
site infection due to bacterial colonization. Crucial advances in material selection in the design and development of 
coating matrixes an opportunity for the prevention of implant failure. However, many coating materials are limited in 
in-vitro testing and few of them thrive in clinical tests. The rate of implant failure has surged with the increasing rates 
of revision surgery creating physical and sensitive discomfort as well as economic burdens. To overcome critical path-
ogenic activities several systematic coating techniques have been developed offering excellent results that combat 
infection and enhance bone integration. This review article includes some more common implant coating matrixes 
with excellent in vitro and in vivo results focusing on infection rates, causes, complications, coating materials, host 
immune responses and significant research gaps. This study provides a comprehensive overview of potential coating 
technology, with functional combination coatings which are focused on ultimate clinical practice with substantial 
improvement on in-vivo tests. This includes the development of rapidly growing hydrogel coating techniques with 
the potential to generate several accurate and precise coating procedures.
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Introduction
Orthopedic implants are an indispensable part of medi-
cal treatment, and are surgically implanted in the human 
body to restore physiological functions. Implants replace 
and support fractured bone, bone unions, regeneration 
and also enhance mechanical stabilization [1]. In addi-
tion, implants are widely used in the treatment of frac-
ture fixation, osteoarthritis, spinal deformation, knee, 
total hip replacement and other orthopedic related fixa-
tions. There is a clear correlation between the ageing 

population and implant surgery [2]. Every year millions 
of people go through bone implants for total hip and 
knee replacement. These include procedures like open or 
closed fracture fixation. Other implants include for sco-
liosis, maxillofacial fixation, and traumatic conditions.

Despite biological and engineering design modifica-
tions, sterilized operating room environments and regu-
lar antimicrobial prophylaxis [2] multidrug-resistant 
pathogens are increasing [3]. According to the “Third 
American Joint Replacement Registry (AJRR) Annual 
Report on Hip and Knee “Arthroplasty Data 2016”, there 
is a 10.2% increase in surgical procedures compared 
to previous years [4]. Orthoperiodic implants, when 
implanted in the host, are highly susceptible to bacteria 
due to the host immune fade zone. It takes only a few 
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hours for microbial adhesion and bacterial colonization 
on the implant surface [5]. Bacteria have diversified strat-
egies to adhere both to natural and synthetic surfaces 
with higher survival rates [6, 7]. Microbial infection is 
relatively higher in open fracture fixation than closed fix-
ation [8], with the risk rates varying between 13.6% and 
8% [9] respectively. Implant failure due to bacterial adhe-
sion to the solid surface of the implant is followed by the 
development of a medium called biofilm [10]. Biofilms 
on orthopedic prosthesis are mainly due to Staphylococ-
cus aureus 20-30% and coagulase-negative Staphylococci 
20–40% [7, 10, 11], resulting in infection and failure of 
tissue integration. Especially with arthroplasties, biofilm 
formation and periprosthetic infections range from 1–9% 
depending on the type of arthroplasties: about 1% in hip 
and shoulder prostheses, 2% in knee prosthesis and 9% in 
elbow prostheses [12]. Spinal infections range from 2-5% 
[13]. The implant device infection ratio extends from 
5% with an infection rate in external fixation, up to 30% 
[11]. AJRR reports from 2012 to 2015, that there were 
169,060 hip arthroplasty procedures in the United States 
of America, of which 17,180 had revision surgery and 
258,121 went for knee arthroplasty, among which 22,403 
had revision surgery [4]. Consequently, this increased the 
revision surgical burden in patients by 10.2% and 8.7% for 
hip and knee respectively [14, 15]. The economic burden 
for this revision surgery due to prosthetic joint infection 
is increasing every year. The predicted hospital costs in 
the U.S. alone are over $500 million, which is anticipated 
to increase to $1.62 billion by 2030 [16].

Regarding the control of the increasing issues related to 
orthopedic implant revision surgery leading to implant 
failure, numerous techniques have been developed 
including engineering modification of implants, selection 
of implant materials, oral intake of antibiotics, coating of 
the implant with natural or synthetic polymeric hydrogel 
matrix, antibiotic coating and many other traditional and 
novel procedures. This review article however, includes 
some of the general coating techniques, used clinically 
for the reduction of surgical site infection and enhancing 
osseointegration. The paper aims to outline coating tech-
niques to enhance bone integration, like hydroxyapatite, 
extracellular matrix/collagen, and magnesium coatings. 
The paper also aims to describe techniques for reduc-
tion of infection, such as direct antimicrobial coating, 
drug-loaded hydrogel coating and advanced combinato-
rial drug coating on implants, along with the associated 
drawbacks of the coating systems and finally, concludes 
with a discussion of future directions.

Associative orthopedic implant‑related complication
Despite the numerous applications and advances in treat-
ment, orthopedic implants still suffer from complications 

and fail to offer functions with respect to the native phys-
iological structure [17]. Among these, “bone non-union” 
and infection are leading causes of revision surgery and 
implant failure. “Bone non-union” is acknowledged as 
septic and aseptic loosening in medical terms, where 
resistance at articulating surface or repetitive mechani-
cal stress associated with locomotion occurs in cemented 
implants [18]. However, osseointegration is a key cause 
of failure of loosening in non-cemented implants [19]. 
Implant associated infection and loosening are respon-
sible for 40-50% of total knee replacement revision sur-
geries every year [20, 21]. Total hip replacement implant 
loosening and infection, leading to device revision sur-
gery is approximately 35% [20], which is comparatively 
lower than early revision surgery, which was 50% [22]. 
The second major complication with regards to bacte-
rial inflammation: bacterial attachment and colonization 
on the orthopedic implant surface governing acute and 
chronic contagion of implant surrounding cells and tis-
sues [23]. Infection caused by biofilm formation on the 
implant sites is a major problem related to implant fail-
ure, where post-operative infection in the implant site is 
significant and includes bone and joint degeneration [10, 
17].

According to the American Census Bureau, the popu-
lation over the age of 65 will increase by 53.2% by 2020 
[16, 24]. This ratio is increasing every year along with a 
growing number of bone-related diseases, demanding 
numerous procedures and innovative techniques. These 
bone-related problems affect millions of the people every 
year, with the majority above 65 years old. Figure 1 shows 
that, along with the host immune system (diseases and 
obesity), improper handling of implants, surgical tech-
niques and the operating room environment are the 
major causes of implant failure [25]. Two major implant-
related problems are outlined below: septic and aseptic 
loosening of prosthetic components and implant coating 
to enhance osseointegration sections.

Septic and aseptic loosening of prosthetic components
Prosthetic joint replacement (PJR) failures due to loosen-
ing is a crucial issue that arises for different reasons. Sep-
tic and Aseptic loosening are two distinct conditions with 
few things in common. One of the common phenomena 
contributing to both types of loosening is the mechanism 
that activates the macrophage. Here, septic loosening is 
caused by virulent bacteria like S. aureus, bacteria that 
come in contact during surgical procedure causes acute 
postoperative inflammation resulting to periprosthetic 
bone loss. The symptom of acute septic loosening is com-
mon (fever and chills) this makes the diagnosis difficult at 
initial phase [26]. The cause behind the septic loosening 
of PJR is mainly due to the rapid development of acute 
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infection of the artificial implant by contagious bacteria 
[27]. Other reasons for septic loosening are prosthetic 
bone loss caused by bacterial-induced inflammation and 
mechanical dislodgement of the prosthetic underlining 
bone bed [28]. Septic loosening causes an increased ratio 
of early infection-producing symptoms including pain, 
functional disruption, redness, fever and purulent drain 
from the surgical site.

Aseptic loosening is slow process that develops over 
years. In early days symptoms are mostly absent and 
diagnosis is done over routine follow-up. The loosening is 
initially driven by low-grade biomaterial wear debris pro-
duced from the bone cement, implant surface [29]. Asep-
tic loosening of PJR, initially known as ‘cement disease’ 
[30], is a gradual process that usually takes a long time. 
In the early phase of implantation, symptoms are almost 
absent as the problem is only evident during routine 
radiographic diagnosis, which reveals light wear of the 
load bearing implants and growth of osteocytes lesions. 
This condition is primarily driven by early inflammation 
caused by wear fragments freed from the load bearing 
surface and the boundary between bone cement or bone, 
Poly methyl methacrylate (PMMA) debris and polye-
thene particles from Ultra-high-molecular-weight poly-
ethylene (UHMWPE) implants [31, 32]. Surgical implant 
failure due to aseptic loosening has been a major problem 
with increasing ratios caused by biological and implant 
fragments, affecting bone resorption (inflammatory cell 
influx) and loss of prosthetic support. Approximately 
25% of prosthetic revision surgery is due to aseptic loos-
ening [33] and 28–29% of cemented implant failures are 

also due to the repetitive mechanical stress associated 
with locomotion [34]. For non-cemented implants, asep-
tic loosening occurs due to the degree of osseointegra-
tion between bone implants.

Implant coating to enhance osseointegration
Bone-implant attachment under a normal state clini-
cally reproduces osseointegration, in conjunction with 
improvements in the structural and functional connec-
tion of bone implants. The regenerated bone connection 
to the implant exhibits an increase in mechanical stabil-
ity. An occurrence of osseointegration follows a similar 
mechanism to bone fracture healing with direct contact 
between bone and implants [35]. When placed in the 
host body an implant device forms an inert oxide layer 
hindering bone-implant interaction [36]. This results in 
the ultimate failure of an implant due to insufficient inte-
gration into the surrounding tissue. From the early 1990s 
until now much research work has been carried out to 
combat osseointegration and implant loosening along 
with infection diminution. Usually, to overcome the issue, 
clinical implants are coated with a bioactive matrix which 
has given promising result in bone tissue integration. 
Recently published research work addressing osseointe-
gration with the abundantly practiced coating matrixes 
to enhance biocompatibility and bioactivity alongside 
reducing implant infections is discussed in Table 1.

Hydroxyapatite coating for osseointegration
Hydroxyapatite (HA:  Ca10(PO4)6(OH)2) coating on the 
load-bearing implant was first proposed during the late 

Fig. 1 Schematic diagram representing causes of orthopedic implant failure
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1960s and is used as an alternative for cemented fixation 
due to its natural osteoconductive and bioactive character 
[53, 54]. Crystalline hydroxyapatite has a three-dimen-
sional geometry [49] and its principal mineral compo-
nent corresponds with natural bone. This is used as a 
coating material, it enhances the osteoconductivity, stim-
ulating bone proliferation and the attachment of osteo-
blast cells on the surface of the implant [55]. The coating 
of HA on the implant surface increases wear resistance 
including osseointegration and mechanical enhancement 
[56, 57]. HA has a substantial in vivo success rate [58, 59] 
and extended implant lifetime [60]. Research shows that 
plasma-sprayed HA coating on Ti6Al4V demonstrates 
direct adhesion of new bone with HA coating and an 
implant [61, 62]. A hydroxyapatite-coated implant-bone 
interface is chemically and biologically bonded directly 
with mark-to-mark new bone formation between the 
gaps (from 1–2 mm to 400 μm) [63].

Regardless of the long clinical history of HA coatings 
on implant surfaces, it has had mixed results concern-
ing osseointegration [34]. Bioactive material (HA) coat-
ing on the implant surface enhances osteogenesis process 
by reducing the inflammation, increasing bioactivity that 
contributes to enhanced osseointegration in bone tissue. 
Osseointegration depends on biological properties of bio-
materials, HA coating layers in the implant surface also 
enhance the ability to induce string bonding to host bone 
contributing in osseointegration [64]. For intensified HA 
performance, researchers have discovered alternative 
procedures: HA mixed with active biological and phar-
macological agents [60] and HA mixed with ceramic [63]. 
Ti6Al4V scaffolds coated with Polydopamine assisted 
HA- implanted in rabbits resulted in amplified cell pro-
liferation, improved attachment, and the bioactivity of 
MC3T3-E1 cells [65]. The study by Yang et al. [66] shows 
the hydroxyapatite/ phase-transited lysozyme (HA/PTL) 
multilayer coating on titanium implants both in vivo and 
in  vitro and concluded there was boosted biocompat-
ibility and osteoinductive phenomena. Phase-transited 
lysozyme-assisted Polyhydroxyalkanoates (PHA) is a sim-
ple, rapid, cheaper surface coating technique [66]. Stron-
tium-substituted hydroxyapatite promotes angiogenic 
factor CD31 along with osteoblastic genes to enable 
angio-osteogenesis [67]. There is also additional recent 
research that includes the HA coating with novel mix-
tures for better results. Woźniak et al. [39] study demon-
strated all the rabbits had HA doped silver nanoparticle 
coated cylindrical implants resulted in improved optimal 
Osseo-integrative and antimicrobial properties. A car-
bonated HA coating matrix has outstanding bioactivity 
and improved wettability expanding protein adsorption 
[68]. In addition, manipulation of the immune reaction 
of macrophages can be done by changing the structure of 

the HA matrix to nano dimensions which can provide a 
robust foundation for the upcoming design of a surface 
coating matrix [69].

Extracellular matrix/ collagen coating
Current interest for improving bone osseointegration 
largely involves surface coating of implants with the bio-
logically extracted extracellular matrix (ECM). ECM 
provides support and anchorage for the cell and tissue 
regeneration. It segregates tissue and regulates intercel-
lular communication. Collagen fibril has the propensity 
to boost osteoblasts and mesenchymal stem cells increas-
ing subsequent improvised osseointegration and the 
bone-implant relationship [70]. Pre-coating of immobi-
lized collagen on the implant surface improves the in vivo 
host acceptance. An implant coated with type 1 collagens 
enhances osteoblast and osseointegration and Mesen-
chymal Stem Cell growth mediated through integrin β1 
created pathways [71, 72]. Immobilization of orthopaedic 
implants, either with adsorptive or covalent plasma coat-
ings with cartilage ECM molecules Glycosaminoglycan 
chondroitin sulfate, increases the effect of the collagen 1 
coating [73, 74]. The test implants coated with covalently 
immobilized type-1 collagen have enhanced cell adher-
ence, cell proliferation, and cell attachment in terms of 
cytotoxicity.

ECM are biologically extracted which makes them vul-
nerable to microbes; and implants coated with ECM can 
elicit infection during implantation. Another drawback is 
that ECM suffer from substantial batch-to-batch variabil-
ity in quality due to the biological extraction procedures. 
Artificial peptide emulating techniques like Arg-Gly-Asp 
(RGD) are used to eliminate associated problems [75]. 
Research shows that an RGD coated titanium implant 
improved osseointegration in several animal studies [76, 
77]. Rammelt et al. [78] inserted six titanium rods coated 
with lyophilized type-1 collagen and other uncoated rods 
into the tibias of mature male Wistar rats and absorbed 
lyophilized type 1 collagen under observation for up to 
28 days. After 28 days bone regeneration was 76.3% and 
67.8% for collagen-coated and uncoated rods respectively 
[78]. This research indicates improved primary bone 
regeneration using titanium rods with a collagen coating.

Magnesium coating
Magnesium and its alloys have high strength and rigidity 
for the internal retention of bone fragments and are com-
pletely absorbable [79] resulting in its numerous applica-
tions. These include surface modification, bone repair, 
and osseointegration phenomenon. In normal adult 
human weighing 70 kg have nearly half of the total bodily 
magnesium deposited in bone material which is essential 
for metabolism [80]. Earlier research in the magnesium 
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coating (MC) have demonstrated that it accelerates 
hard callous foundation by adhesion of osteoblast and 
new bone formation [81]. Deficiency of Mg during the 
implant leads to negative bone mass density [82]. MC-
implant add-ons increases the amount of Mg on bone 
density [83, 84]. Zhai et al. [85] studied magnesium coat-
ing on total joint arthroplasty (TJA) which found that 
Mg has a significant influence over the proliferation and 
apoptosis of osteoblast and on osteoclast formation. 
Mg also unveils antifungal and antimicrobial properties 
against S. Aureus which averts bacterial addition on the 
implant surface and biofilm formation [84]. Magnesium 
and its alloys were used in the surface coating of porous 
titanium implants Ti6Al4V by Li et  al. [86] to improve 
the osseointegration of Ti. The in vitro study shows suit-
able biocompatibility and biodegradable properties of 
the magnesium coated titanium implant (MCTI). The 
non-cytotoxicity behavior boosted MC3T3-E1 cell pro-
liferation. The author summarized that MCTI promotes 
bone regeneration and better osseointegration in rabbit 
femoral condylar was observed after 4 to 8 weeks in com-
parison with uncoated Ti. The release of Mg coated on 
implant surface passages to the periosteal region via Har-
versian or Volkmann’s canals was enhanced as the diam-
eter of Mg ions are much smaller than those canals i.e. 
(< 300  pm) [87]. Therefore, the MCI can comparatively 
enhance the bone regeneration and reduction of biofilm 
formation. Thus, MCI resists corrosion and amplifies 
biocompatibility with an antibacterial effect in vitro with 
enhanced osteogenesis and osseointegration properties 
compared with uncoated titanium implant.

Chitosan coating
Chitosan is synthesized from natural renewal polymer 
chitin from deacetylation in an alkaline media [88]. It is 
a highly biocompatible and biodegradable polymer with 
numerous areas of application, one of which is the surface 
coating of orthopedic implants. The primary function of 
chitosan is antimicrobial, because of its poly-cationic 
nature and antifungal enhancement in osseointegration, 
even speeding up wound healing [89, 90]. Chitosan is 
non-toxic, biocompatible and bio-adhesive with unstable 
biomolecules this makes chitosan a valuable component 
in formulation of drug. Hence, it’s also used as an antitu-
mor, immunoadjuvant and is anticholesteremic [91]. An 
antimicrobial function of the chitosan-coated implant is 
facilitated by electrostatic force among the protonated 
amino groups  (NH2) in chitosan and negative residues in 
the cell surface [92]. Currently, post-surgical prevention 
search is widely carried out. D’Almeida et al. [93] studied 
antibacterial action against Escherichia coli and Staphylo-
coccus aureus strains in an animal-free chitosan -embed-
ded titanium alloy implant. Thus, the immobilized 

chitosan success rates can be identified via surface char-
acterization techniques and enhanced bacterial effects. 
Chitosan-coated on titanium screw indicates reduced 
infection ratio and healing sequence of woven bone for-
mation, fibrous followed by the formation of lamellar 
bone [94]. A Ti implant coated with chitosan in  vitro 
demonstrated prevention of staphylococcus epidermidis 
ATCC 35,984 and biofilm formation [95].

Future directions for enhancing osseointegration
Future research demands more emphasis on fabrication 
and surface modification procedures. Those procedures 
should have a higher ability to discretely control biologi-
cal, chemical and physical phenomena after being imple-
mented in a host. Ionization of the implant materials 
causes a reaction with the biological host system result-
ing in bone nonunion, implant loosening and weaker 
osseointegration. These advanced techniques will be 
applied to the development of implant surface coatings 
to develop control of biomolecules. This will also inten-
sify the ability of coating techniques to prevent delivery 
of bioactive biomolecules. Implant coating should be car-
ried at the basic level to modulate acute inflammation, 
prevent chronic infection, stimulate osseointegration and 
at the same time induce the reparative stage. As a cru-
cial issue in implant surgery, osseointegration demands 
more research focusing on surrounding bone growth, 
with the optimal design of the biomaterial porous sur-
face to encourage bone ingrowth and implant stabiliza-
tion. Other potential studies can involve the investigation 
of novel biomaterials and polymer coating techniques 
which can enhance bone regeneration and even the inter-
action with host cells in predicted mode rather than just 
replacement.

Implant coating to reduce bacterial infection
Systematic antibiotic prophylaxis has always been the 
most common strategy to avert early implant-related 
infection. This process is not effective in delayed or late 
infections with a timeline extending to years making 
it difficult to identify the infection and eradication of 
biofilm. This increase in the infection ratio due to anti-
biotic-resistance reinforces the need for active, preven-
tive solutions. The resolution for this condition can be 
obtained by a change in the bulk properties of implant 
material that hinders bacterial adherence. This could 
be implementation of surface coating techniques pre-
venting adhesion, colonization and biofilm formation. 
The socio-economic time frame of surface coating tech-
niques provides a favorable immune cell response and 
biocompatibility [96]. Passive antifouling surface coat-
ing, super-hydrophobic structuring and smart polymer 
coatings are frequently used surface coating techniques 
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to avert bacterial cell-surface collaboration. Direct coat-
ing of antibiotics to the implant surface and antibiotic 
loaded matrixes have been clinically used [97]. A signifi-
cant amount of research has been carried out in search of 
effective treatments for implant infection to resist biofilm 
[12]. In the present context, many coating techniques 
with quorum-sensing quenchers, antibiotic-antimicro-
bial coatings and host immune modulator coating are in 
use. Some of the techniques for antibacterial coating on 
implants are included in this review below in Table 2.

A. The direct Antibacterial/antimicrobial coating
The customary method to reduce implant infection 
and biofilm formation is to use an antibacterial coating 
on the implant surface. Systemic antibiotic prophylaxis 
is consistently applied especially for the prevention of 
postsurgical infection [107]. However, systematic drug 
administration is relatively low for target delivery and 
impending toxicity as a skeletal system has poor vascu-
larity. To inhibit bacteria, antibiotics are locally/directly 
used in implant surgical site in higher concentration [108, 
97]. During surgical closure, antibiotics in powder form, 
such as vancomycin, are directly sprinkled on the inci-
sion to reduce the Surgical site infection (SSI) ratio dur-
ing tibia plateau, spinal deformity and fracture fixation 
[108]. This shows reduced infection rates with minimal 
local and systemic risk in the adult population [109]. The 
antibiotic prophylaxis in bone cement can help reduce 
deep infection, revision surgery and aseptic loosening of 
implants [110].

In conjunction with the above, covalent attachment 
of antimicrobial peptides provides a defense against 
non-specific interactions, and diminishes the impact 
of surface effects and confinement [111]. The ability of 
covalently bound vancomycin coatings on Ti-implant 
surfaces to constrain S. aureus and S. epidermidis in vitro 
and in vivo was demonstrated by Jose, Antoci et al. [112] 
more than a decade ago. Covalent merged vancomycin 
with the titanium-alloy implant surface resulted in signif-
icant inhibition of S. epidermidis biofilm formation [113]. 
This covalently chained vancomycin showed substantial 
control of bacterial colonization and amended osseointe-
gration even after 3 months observed in an animal model 
[114].

A recent publication commented on vancomycin 
coatings for the reduction of implant-associated infec-
tion with novel electrostatic dry powder outlined, 
release and effects observed both in-vivo and in-vitro 
for 7  days. It specified biocompatibility for the osteo-
blast cell line MG-63 together with higher antibacterial 
ability against methicillin resistance S. aureus (MRSA) 
[115]. Gentamicin is another commonly used antibiotic 
for the reduction of implant infection [116, 117]. Other 

antibiotics with broad spectra, like amoxicillin, cepha-
lothin, tobramycin, and carbenicillin are used as implant 
coating drugs [117, 118]. For controlled release, surface 
coating of implants with drugs like tobramycin, cefa-
mandole, rifampicin or gentamicin is in wide use [117]. 
Direct coating of antibiotics on implants leads to burst 
and instant release 80–90% within the first few hours 
[119]. To increase the sustained release of drugs for a 
longer period, they can be incorporated into the matrix 
or hydrogel with controlled pore size. Recently, covalent 
coating of the drug onto the surface of an implant has 
been trending for sustained release. The titanium implant 
surface is covalently modified by aminopropylation 
which is extended by tethering solid phase coupling of 
ethylene glycol linkers, this is further followed by phase 
coupling of vancomycin. Vancomycin now is successfully 
covalently bound in a titanium implant surface prevent-
ing bacterial adherence and organized release [120]. This 
can be advantageous for reinforcement of antibacterial 
capacity on the implant surface while concurrently eradi-
cating the side effects of burst release of drugs in body 
fluids.

B. Antibiotic‑loaded Hydrogel coating on implants surface
Hydrogels have both hydrophobic and hydrophilic char-
acter and are biocompatible which can be refilled with-
out revision surgery over time. These types of hydrogels 
give sustained drug delivery over time and control sur-
gical site infection related to implants [121–123]. They 
are widely used for implant coatings as a measure to 
reduce infections related to implants and for prevention 
of implant failure. The smart hydrogel, responsive to pH 
and temperature is further complemented by its highly 
biocompatible and biodegradable characteristics. Zhai 
et  al. [85] proposed a fast resorbable antibiotic-loaded 
hydrogel coating on an implant surface to prevent post-
surgical infection and for osteosynthesis [85]. This is also 
known as a defensive antibacterial coating (DAC), it con-
sists of covalently linked hyaluronan and poly-D, L-lac-
tide which is designed to undergo complete hydrolytic 
degradation in vivo.

In the study, 256 patients who underwent osteosyn-
thesis for closed fracture fixation were allotted DAC for 
approximately 18 months. It was observed that it can sig-
nificantly reduce post-surgical infection on the implant 
site. Along with this, there is much other research con-
cerning DAC coatings on implant surfaces to augment 
osseointegration and for diminution of SSI. Drago, 
Boot [124] coated antibacterial (gentamicin, amikacin, 
tobramycin, vancomycin NAC) loaded hydrogel on an 
implant surface [2] and significant effects were observed. 
Surface coating of implants with fast-resorbable antibi-
otic-loaded hydrogel has a noteworthy fail ratio of early 
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SSI [100] observed from a clinical trial. DAC hydrogel 
coating is biocompatible and does not interfere with 
implant osseointegration [125]. DAC loaded with 2% 
of w/v vancomycin was coated on intra-medullary nails 
which were ultimately used for femur fixation of an adult 
New Zealand rabbit showing reduced bacterial coloniza-
tion in an animal model with highly loaded bacterial con-
tamination of an implant [101].

Figure  2 illustrates the experiment on “Antibacte-
rial loaded hydrogel coating on final implant” De Meo, 
et  al. [104] reveals that an implant coated with an anti-
biotic has a significant effect on bacterial inhibition. The 
implants were coated immediately before the insertion 
and divided into two groups. 1). Antibiotic loaded hydro-
gel (ALH) insertion with 5  ml of hydrogel mixed with 
200  mg of gentamicin total of 14 patients; and 2). Dual 
antibiotic loaded hydrogel with 250  mg of vancomycin 
mixed with 5 ml of hydrogel and 200 mg of gentamicin in 
four patients [104].

Commercially applied Poly (D, L-lactic acid) (PDLLA) 
loaded with gentamicin used for the surface coating of 
implants revealed inhibition of bacterial colonization. 
Rapid release of the drug initially was followed by a sus-
tained release for about a week where PDLLA degraded 
in nearly six months [126]. The ability of the hydrogel to 
adhere to an implant surface provides corrosion resist-
ance. Related publications regarding surface coating of an 
implant with antibiotic-loaded biodegradable hydrogel 
are abundant. However, this is not commercially prac-
ticed [127, 128].

A thin layer implant coating with poly (N-isopropyl 
acrylamide) (PNIPAM) hydrogel diminishes chronic 
inflammation on the implant sites with an increased level 
of macrophage 80% [129]. PNIPAM hydrogel consists of 
PNIPAM-co-AA microgel particles which are crosslinked 
with polyethylene glycol (PEG) diacrylate tethered onto 
a polyethylene terephthalate substrate. Copolymer based 
hydrogel loaded with a ciprofloxacin coating on a tita-
nium implant was used for testing in  vitro methicillin 
resistance S. aureus (MRSA) where MG63 osteoblast 
cells assess the biocompatibility of ciprofloxacin loaded 
hydrogel coatings [130].

Silver antimicrobial coating
Silver (Ag) has been used as an antimicrobial element for 
centuries. Numerous studies have investigated silver as a 
promising antimicrobial coating material [131, 132]. The 
silver coating on suturing wire has been used from an 
early time. It is widely used in urinary catheters and cen-
tral venous catheter coatings with a significant reduction 
in inflammation [133, 134]. Different techniques are used 
for silver coating, varying in chemistry, loading amount, 

release pattern and mechanism of the matrix. Ag inhib-
its gram-positive and gram-negative bacteria and offers 
long-term effects.

The mechanism of the silver ions also disrupts the cell 
membranes of bacteria, the metabolism, and formation 
of DNA [135]. Silver ions bind with the thiol group in a 
bacterial membrane and metabolize the enzymes [136]. 
This disruption of the bacterial respiratory enzymes dam-
ages the cell membrane disabling the bacteria protecting 
protein assembly. The surface of the implant is coated 
with silver ions. These silver ions physiologically bind 
with the host ions (Chlorine, Sulphur), reducing toxic-
ity to the host system with increased antimicrobial effi-
ciency. When using silver ions alone in the coating will 
result in bacterial colonization control. However, a silver 
coating on the surface of the implant with the drug (dap-
tomycin and vancomycin) separately demonstrated major 
preventive significance [131]. The same study shows that 
the dual drug combination has 100% preventive results. 
The known negative of silver coating is burst release giv-
ing a systematic effect and local toxicity [137] informa-
tion regarding long-term tissue toxicity. More research 
has published on silver coatings for titanium screws was 
concluded that this can prevent deep bone infection 
when anodically polarized [138].

Future trends for the control of infection
There is a significant demand for a detailed study of the 
physical constraints that employs an advance and sus-
tained approach. This will facilitate objective evaluations 
between distinct surfaces in both natural and reformed 
procedures. However, this gap in understanding can only 
be narrowed through the improvement of strategies for 
highly controlled modification of implant materials. Ioni-
zation of biomaterial is found to trigger infection in many 
cases, which corroborates the demand for the improve-
ment of the materials used in manufacturing implants.

Aimed at in-vivo study of anti-adhesive surfaces that 
can prevent bacteria and intensify host cell attachment, 
this could lead to enhancement of tissue integration. For 
these reasons, formulation of test conditions that mimic 
the in vivo environment could be considered more rele-
vant for clinical applications. Regarding the biofilm, early 
infections are not easily diagnosed. Future research can 
pave the way for detection techniques that could identify 
polysaccharides or other unique components in the bio-
film. It would not only benefit laboratories to be able to 
identify species-specifications involved in biofilm. There 
would be a profound impact on patients by reducing both 
diagnosis and treatment duration. This could reduce the 
economic burden of healthcare.
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Commonly practiced surface modification techniques
Orthopedic implant-related surgery is considered a suc-
cess when the implant has a stable fixation and minimum 
bacterial infection. To fulfil the increased demand for 
implant surgery and accelerate the osseointegration pro-
cess, various implant materials have been selected that 
offer excellent functional properties, like stainless steel, 
titanium and its alloys, cobalt-chromium and its alloys, 
zirconia and polymers. However, along with the coating 
materials (natural and synthetic) discussed above, surface 
modification techniques are used to further enhance the 
functional and mechanical abilities of these materials. 
These techniques reduce the possibility of inflammation, 
and enhance corrosion resistance, biocompatibility and 
modulus of elasticity of substrate [139]. Surface oxida-
tion, wear resistance, and implant degradation are initi-
ated on the surface. Hence external stimuli are used on 
the substrate for modification. Some of the commonly 
used surface modification techniques are Chemical 
Treatment (CT), Biological Techniques (BT), Plasma 
Spray Technique, Sol–gel Technique and Texturing.

Chemical Treatment (CT)
Chemical surface treatment enhances the biocompatibil-
ity between the implant and bone by generating similar 
chemical bonding to that of bone [140]. It is categorized 
into two groups: specific and non-specific. Examples 
of a non-specific chemical reaction are oxidation of a 
polyethene surface by chromic acid and radiofrequency 
glow discharge (RFGD) plasma treatment. The specific 
chemical surface reaction occurs when a solo functional 
group is converted into another with a high yield and 
side reaction, for example, alkylations and alteration of 
siloxane, Filler et al. [141]. Inside this chemical technique, 
numerous methods are followed for surface modification 

including alkali treatment, hydrogen peroxide treatment 
and acid treatment.

Biological Techniques (BT)
Biological coating techniques are practiced both in vivo 
and in  vitro experiments. Techniques, like cell seeding 
and natural coatings promote cell proliferation, osteo-
blast adherence, and cell differentiation. On the surface 
of the porous implant, different cells and proteins have 
been seeded [142, 143]. However, the efficacy of this 
method depends on the differential potential of cells, 
density, position and implant design [144].

Plasma spray technique
Plasma spraying (PS) is the only coating technique prac-
ticed clinically. Here the sample coating materials are 
loaded on a plasma jet. These samples are melted using 
the thermal heating technique and coated on implants 
under the plasma torch creating a vacuum. PS is a cost-
effective and safe procedure [145]. Hydroxyapatite (HA) 
is a commonly used coating material in PS. It has an 
excellent deposition rate and compact layer formation 
compared to other techniques Singh et al. [146]. The HA 
coatings on the implants using this technique resulted in 
enhanced corrosion resistance and bioactivity of metallic 
substrate Fazel et al. [147].

Sol–gel technique
Sol–gel technology is a simple wet-chemical method that 
creates an oxide layer changing the pH of the implant 
surface or, with the sol-gelation method, by thermal 
treatment. This process changes the solution to aerogel 
or ceramic with altered guidance as necessary. The major 
advantage of the sol–gel surface modification technique 
is that it utilizes a low-thermal heating technique allow-
ing first-rate control over the chemical coating. It is also 
used in drug-loaded hydrogel coatings with a highly con-
trolled release rate [148].

The Fig.  3 above demonstrates the simple steps fol-
lowed in the surface coating using the sol-gel coat-
ing method, liquid immersion and electrophoretic 
process. The sol-gel process is broadly used in thin coat-
ing (< 10 µm) ceramic coating [150].

Texturing
The process of texturing modifies the surface topogra-
phy of the implant surface by creating microspores and 
microchannels. This method is intended to facilitate 
elastohydrodynamic lubrication to reduce the frictional 
forces between the mating parts. Texturing improves the 
surface area, the strength of the implant and decreases Fig. 2 Experiment on “Antibacterial loaded hydrogel coating on final 

implant” De Meo. et al. [98]
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surface scratch risks. Etsion et  al. [151] demonstrated 
how microscale and nanoscale textures contributed 
to cell interactions on the implant surface and regu-
lates cell proliferation, signaling and adhesion. The 
combined effect of hydrophobic or hydrophilic con-
figuration or capillary force might be responsible for 
the self-organization of protein molecules and cell 
attachment Kurella et al. [139]. Various surface textur-
ing methods using a surface modification are listed in 
Table 3.

The physical surface modification technique is like a 
grit blasting technique that uses rough particles. TiO2, 
HA or alumina is used in the implant surface by apply-
ing force and pressure of compressed air [157]. This 
method cleans the residuary particles while accelerat-
ing osteogenesis [158]. In addition, a new and promising 
technology known as additive manufacturing (AM), also 
commonly referred to as 3D printing/rapid prototyp-
ing, is being used more widely. Substrates are modified 
while manufacture in a layer-by-layer fabrication method 
selectively melting by laser and electron beams [157]. The 
substrates which undergo AM modelling are clinically 
relevant with increased mechanical strength contributing 
enhanced collagen deposition and adhesion of mesen-
chymal cells [159].

Discussion and conclusion
Implant surgery to combat functional and physiologi-
cal characteristics has been trending for a long time for 
orthopedic applications. However, it suffers from diverse 
complications. This has advanced the treatment proce-
dure. While this includes the invention of new materials 
and alloys with higher biocompatibility, mechanical and 
functional strength, surface modifications and implant 
coating techniques have also been developed. Implant 
coating has demonstrated outstanding results in  vitro 
and in-vivo. Nevertheless, the complete eradication of 
implant-associated complications is still not complete.

There is an increased demand for orthopedic implant 
surgery. However, there are several applications which 
increase the potential of implant failure due to infection, 
bone-nonunion, aseptic loosening and osseointegration. 
This not only gives a negative impact to the emotional 
and physiological condition of patients but also increases 
the economic burden of many researchers who have 
been interested in number of coating techniques. These 
facilitate implant insertion, reduce infection, enhance 
biocompatibility, extend the lifetime of the implant and 
prevent associated complications. Aseptic loosening due 
to the disintegration of an implant and eventual wear 
of implants with continuous movement has been major 

Fig. 3 Types of sol–gel coating techniques on implant surface Priyadarshini, Rama et al. [149]
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problem. When it comes to augmenting the implant 
function and adherence, enhancement of osseointegra-
tion is an important issue. It encourages the develop-
ment of optimized and advanced coating techniques to 
boost implant-tissue integration. Along with the natu-
rally extracted coating matrix, research has also focused 
on primary proteins, growth factors, and biomolecules 
to use as the coating adhesive. While focusing on the 
application of the coating matrix, it is mandatory to have 
a brief systematic analysis to demonstrate the benefits, 
biocompatibility, toxicity (both local and systemic), bio-
degradability and released sustainability. Regardless of 
the natural or synthetic coating matrix, materials that 
embrace a higher degree of biocompatibility and bio-
degradability offer substantial value. Another specific 
benchmark for the design of a coating matrix involves 
the ability to activate osteoconductive actions and reduce 
infection. However, this should not elicit immune or for-
eign body responses and must encompass antibacterial 
properties.

Reductive and preventive coating techniques applied 
either directly, or antimicrobial loaded hydrogel have 
shown significant results. A combination of the natural 
or systematic matrix and incorporation of antimicrobial 
agents has produced promising results in device-related 
infection control. However, antibacterial resistance has 
become an important concern, as there may be poor 
control over drug release patterns (burst or uncontrolled 
release). For the present therefore, coating techniques 
that can be effective in the anticipation or disruption 
of bacterial colonization are of prime interest. This can 
be further enhanced to improve anti-quorum-sensing 
agents with the ability to diminish interference with the 
biofilm.

Existing coating techniques have been shown to be 
effective in  vitro. However, when it comes to clinical 
practice, few of them are commercially viable. This shows 
that the ideal coating material must satisfy all the crite-
ria, including mechanical integrity, sustained-release 

kinematics and host toxicity. Surgeons must be pre-
informed about the possible pros and cons of the coating 
matrix and techniques. Any innovative coating matrix 
developed, must be able to overcome current issues such 
as bacterial resistance growth, the porosity of the matrix 
for sustained release, resorption, and enhanced osseoin-
tegration performance. The synergistic combination of 
the present coating matrix HA, chitosan and collagen 
with the other biomolecules will help enhance bioactiv-
ity and reduce early problems associated with the coat-
ing. The combination of antibiotic and antimicrobial use 
together with the matrix will enhances the sustained 
release pattern and prevent antibiotic resistance. Incor-
poration of silver and magnesium into the coating matrix 
with natural hydrogel could reduce any drawbacks. The 
use of the dual drugs with alternative and sustained 
release could lead to the next level of coating techniques. 
However, the coating matrix must be easily reproducible 
and should not have long-term storage problems.

Conclusion
This article discussed the numerous implant coating 
techniques used both in  vivo and in  vitro to prevent 
bacterial infection. Includes both natural and synthetic 
hydrogels with or without loading antibiotics contribut-
ing significant enhancement in the implant life and infec-
tion control. Following the brief introduction of implant 
infection and its type, types of bacteria that contributes 
most to the implant infection, biofilm, types of natural 
hydrogels and antibiotics, silver antimicrobial coating. 
Alongside presenting brief future direction in implant 
coating techniques and possible ideal hydrogel develop-
ment techniques.
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Table 3 Various surface texturing methods using a surface modification

Texturing Process Features

Sandblasting
Martin et al. [152]

A random surface texturing process, difficult to control the depth and regularity of the substrates

Electron beam texturing
Rajnicek et al. [153]

Precise control: requires a vacuum

Photolithography
Clark et al. [154]

Demonstrates well-controlled features, the mutual problems with organic solvent, spin coaters 
and photoresists process

Electric arc texturing
Curtis et al. [155]

Used for conductive materials: lower control over the process

Laser texturing/ micromachining
Duncan et al. [156]

This process delivers precise control of even complex features: fast, clean and no contact
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