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Abstract

Background: The injection of botulinum toxin (BTX) to reduce facial wrinkles is one of the most frequently
performed plastic surgery procedures. The biocompatible hydrogels are injected with BTX for effective tissue
augmentation. However, it is difficult to determine the interval of injection for effective tissue augmentation.

Method: BTX and hyaluronate (HA) hydrogels were labeled with zwitterionic (ZW) near-infrared (NIR) fluorophores
and visualized for 3 weeks after injection to BALB/c nude mice.

Results: BTX-ZW conjugates and diaminohexane (DAH)-HA-ZW hydrogels were successfully prepared by the
conventional EDC/NHS chemistry. Using the NIR fluorescence imaging, we confirmed that approximately 10% of
BTX-ZW conjugates and 50% of DAH-HA-ZW hydrogels remained 3 weeks post-injection.

Conclusion: This bioimaging technique using invisible NIR fluorescence light can be exploited for various
biomedical applications.
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Background
Botulinum toxin (BTX), a neurotoxic protein derived
from the bacterium Clostridium botulinum, is most fre-
quently used for removing facial wrinkles [1, 2]. Small
quantities of BTX can cause relaxation of overactive
muscles and reduce wrinkles by smoothing overlying
skin [3]. BTX inhibits acetylcholine release and causes
temporary chemical denervation at the neuromuscular
junction by cleaving the synaptosomal-associated protein
of 25 kDa [SNAP-25] on the internal surface of neuronal
membranes, followed by vesicle fusion at the cellular
level [4]. After SNAP-25 regenerates over time, BTX ef-
fects diminish in the targeted muscles, and neuromuscu-
lar signaling and muscle contractility are restored [4].
Biocompatible hydrogels are generally injected with

BTX to help fill skin wrinkles and effectively augment

tissue volume [5, 6]. Among injectable dermal fillers,
hyaluronate (HA) hydrogels have become especially
popular for soft tissue augmentation since HA can ab-
sorb water to recover the volume of aging tissue [7–10].
HA fillers with a larger particle size and higher molecular
weight are generally preferred to extend the duration
under the skin, which can be obtained by crosslinking HA
[11–13]. The typical dose of BTX is 200 unit in 3 months
interval [14]. The use of BTX and dermal fillers, however,
threatens healthcare workers and patients due to residue
left in the body, and it is a challenge to determine the dos-
ing interval for effective tissue augmentation. Moreover,
there have been previously reported the efficacy of Botox
through bioimaging techniques [14, 15]. However, there
were no studies to confirm the in vivo behavior of BTX.
Here, we firstly investigated in vivo dynamics of BTX

and dermal fillers for tissue augmentation using near-
infrared (NIR) fluorescence, which penetrates deeply
into biological tissues [16]. We previously reported that
zwitterionic (ZW) NIR fluorophores have low serum
binding, low nonspecific tissue uptake, and rapid elimin-
ation from the body through renal filtration [17]. ZW
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fluorophores also have superior optical properties (i.e.,
high extinction coefficient and quantum yield) compared
to visible dyes, which together improves quantitative bioi-
maging [18–21]. In this study, we investigate the in vivo
dynamics of BTX and HA hydrogels for tissue augmenta-
tion by introducing ZW fluorophores in the chain.

Methods
Materials
Hyaluronate (HA) was purchased from Lifecore Co.
(Chaska, MN). Botulinum toxins (BTX, Meditox,
Ochang, Korea) were kindly gifted from Dr. Jeesoo An at
the Wellman Center for Photomedicine in Massachusetts
General Hospital. 1-Ethyl-3-(3-dimethylaminopropyl) car-
bodiimide (EDC) was obtained from Tokyo Chemical
Industry (Tokyo, Japan). N-hydroxysulfosuccinimide
(sulfo-NHS), phosphate buffered saline (PBS), diamino-
hexane (DAH) and hydroxylbenzotriazole (HOBt) were
purchased from Sigma (St. Louis, MO). Dialysis mem-
brane tube was obtained from Thermo Scientific Co.
(Waltham, MA).

Synthesis of Zwitterionic (ZW) NIR fluorophores
ZW NIR fluorophores were prepared as reported previ-
ously [18]. In brief, Vilsmeier–Haack reagent was used
for the condensation reaction with prepared intermedi-
ate indolium salts in anhydrous sodium acetate to
prepare indocyanine based chloro-subtitued NIR fluoro-
phore. And then, using microwave synthesis, a bifunc-
tional phenoxypropionic acid linkage was introduced on
the meso-chlorine atom to permit conjugation of target-
ing ligands. The crude product was washed against di-
ethyl ether and precipitated in methanol and diethyl
ether (20 mL, 1:4) to give the ZW NIR fluorophores.

Labeling of ZW fluorophores
HA and BTX were labeled with the amine modified ZW
fluorophore, with emission wavelengths of 700 nm and
800 nm, respectively. HA (MW 100 kDa) was dissolved
at a concentration of 5 mg/mL in double distilled water.
After complete dissolution, ZW fluorophores (1 M ratio
of HA) were added to the HA solution, and EDC and
sulfo-NHS were added with 4 M ratio of HA to activate
the carboxyl groups of HA. The pH of the reaction mix-
ture was maintained at 6.5, and ZW fluorophore (1 M
ratio of HA) was added to the solution and stirred over-
night. After the reaction was stopped by changing the
pH to 7.4, the resulting HA-ZW conjugate was purified
with gel permeation chromatography (GPC) measuring
the retention time. The mobile phase was PBS at pH 7.4
and the flow rate was 1 mL/min. The detection wave-
length was 210 nm. The purified conjugate solution was
lyophilized for 3 days. BTX was dissolved in phosphate
buffered saline (PBS, Sigma, St. Louis, MO) and the

conjugation and purification was performed as described
above. The detection wavelength was 280 nm.

Preparation of DAH-HA-ZW hydrogels
DAH-HA-ZW hydrogel was prepared using the same
method described elsewhere [22]. HA-ZW conjugates
were dissolved at a concentration of 30 mg/mL in
double distilled water; after complete dissolution, DAH
(1 M ratio of HA) was added to the HA solution for a
cross-linking reaction with the carboxyl groups of HA.
EDC and HOBt (1 M ratio of HA), activating the carb-
oxyl groups of HA, were dissolved in water and added
to the mixed solution of HA and DAH for DAH-HA
hydrogel preparation. The final precursor solution was
incubated at 37 °C for 2 h to complete the cross-linking
reaction. Prepared DAH-HA-ZW hydrogels were sealed
within dialysis membrane tube (MWCO of 7 kDa) and
dialyzed against PBS for 3 days to remove the remaining
EDC, HOBt, and DAH completely. The degree of
modification in DAH-HA conjugates was analyzed by
proton nuclear magnetic resonance (1H NMR, DRX-400,
Bruker, Germany).

Bioimaging of BTX-ZW conjugates and DAH-HA-ZW
hydrogels
BTX-ZW conjugates and DAH-HA-ZW hydrogel with
the same fluorescence intensity were intramuscularly
and subcutaneously inoculated into the BALB/c nude
mice (100 pmol of ZW dye, 50 μL), sequentially. The
home-built dual-channel imaging system [21] was used
to acquire NIR fluorescent images at 0, 1, 2, and 3 weeks
post-injection. Animals were housed in an AAALAC-
certified facility and all animal studies were performed
under the supervision of BIDMC IACUC in accordance
with approved institutional protocol of #057–2014.

Results and discussion
Synthesis of BTX-ZW conjugates and DAH-HA-ZW
hydrogel
Figure 1 shows the schematic representations for the
chemical synthesis of BTX conjugates and HA hydrogel
with ZW fluorophores. The ZW fluorophores emit NIR
wavelength and avoid nonspecific tissue uptake and
serum protein association due to their net charge. In
plastic surgery, BTXs were typically injected in muscle,
which is a deeper site than the subcutaneous injection of
hydrogels for tissue augmentation. The carboxyl group
of BTX was modified with amine-modified ZW800–1
fluorophore, which has a longer wavelength of fluores-
cence for intramuscular injection. In addition, HA was
conjugated with ZW700–1, which has a shorter wave-
length. The ZW labeled HA hydrogel was formed by the
crosslinking of DAH. Since the amine groups of
unreacted DAH crosslinkers were reported to be
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nontoxic and promote the attachment and proliferation
of keratinocytes and fibroblasts [23], DAH-HA-ZW
hydrogel can be exploited for tissue augmentation.

Characterization of the BTX-ZW, HA-ZW, and DAH-HA
conjugates
The resulting BTX-ZW and HA-ZW conjugates were
characterized and purified by GPC analysis (Fig. 2a). The
retention time of native BTX-ZW with a MW of
150 kDa was ca. 3 min, and the retention time of HA-
ZW with a MW of 100 kDa was ca. 1.5 min. The reten-
tion time of the mixture of HA-ZW and BTX-ZW was
ca. 1.5 min. Successful conjugation of DAH to HA was
confirmed by 1H NMR analysis (Fig. 2b). The pattern of
1H NMR spectrum of DAH-HA conjugates was identical
with our previous work [24], and the integral ratio on
the 1H NMR spectrum suggested that, on average,
18 mol% of HA units was modified with DAH. The me-
thyl resonance (δ = 1.85–2.05 ppm) of acetamido moiety

of N-acetyl-D-glucosamine residue in HA was used as
an internal standard, and the degree of DAH-HA modi-
fication was determined from the peak area of methy-
lenes of DAH at δ = 1.3 ppm.

Dynamics of BTX-ZW conjugates and DAH-HA-ZW
hydrogel
Based on characterization, we investigated the dynamics
of BTX and HA hydrogel in vivo. The ZW labeled BTX
and HA hydrogel were administered with intramuscular
and subcutaneous injection, respectively. NIR fluores-
cent images were acquired with emission wavelength of
700 nm (for ZW700–1) and 800 nm (for ZW800–1) by
fluorescence-assisted resection and exploration (FLARE)
imaging. As control, ZW800–1 with intramuscular injec-
tion and ZW700–1 with subcutaneous injection were
also tested for comparison. In Fig. 3, almost no fluores-
cence signal of control group remained at injection site
within 1 week. Based on previous work [20], the control

Fig. 1 Schematic diagrams for the synthesis of (a) BTX-ZW conjugates and (b) DAH-HA-ZW hydrogel, and for the illustrated structure of (c)
DAH-HA hydrogel
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Fig. 2 a The gel-permeation chromatogram of BTX, HA, and the mixture of HA and BTX. b NMR spectrum of DAH-HA conjugates

Fig. 3 NIR fluorescence images of ZW700–1 with subcutaneous (s.c.) injection, ZW800–1 with intramuscular (i.m.) injection, DAH-HA-ZW hydrogel
with s.c. injection, and BTX-ZW conjugates with i.m. injection, in order from top to bottom
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group may also clear within 1 day from the body. BTX-
ZW conjugates and DAH-HA-ZW hydrogel remained in
the body for over 3 weeks, but the remaining pattern of
BTX-ZW conjugates differed from the DAH-HA-ZW
hydrogel pattern. The BTX-ZW conjugates cleared
quickly, caused by enzymatic degradation. However,
since the crosslinked HA can avoid enzymatic degrad-
ation, DAH-HA-ZW hydrogel could remain for over
3 weeks.
Based on FLARE images, the in vivo dynamics of

fluorescence was measured by quantifying fluorescence
injection of the injection site (Fig. 4). Since all samples
with ZW fluorophore were inoculated by injection, we
normalized the fluorescence intensity to 100% at 0 week.
Both BTX and DHA-HA hydrogel remained in the body
longer when compared to the control group. Over 50%
HA hydrogel remained subcutaneously, while 10% of
BTX remained in muscle after 3 weeks of administra-
tion. BTX was easily removed due to its small size and
enzymatic degradation. Overall, we could confirm the
amount and body residue of BTX and HA hydrogels
using bioimaging with ZW fluorophore. This strategy for
indicating body residue and dosing interval of agents
can be harnessed for various biomedical applications.

Conclusions
Bioimaging techniques using Zwitterionic (ZW) NIR
fluorophores were successfully carried out to investigate
in vivo dynamics of each component for tissue augmen-
tation. BTX-ZW conjugates and DAH-HA-ZW hydrogel
were synthesized, and in vivo dynamics were investigated
using home-built bioimaging equipment. Bioimaging
using ZW fluorophores for indication of bodily residue
and the interval of agents can be exploited for various
biomedical applications.
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