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Abstract

Regenerative endodontics has been proposed to replace damaged and underdeveloped tooth structures with
normal pulp-dentin tissue by providing a natural extracellular matrix (ECM) mimicking environment; stem cells,
signaling molecules, and scaffolds. In addition, clinical success of the regenerative endodontic treatments can be
evidenced by absence of signs and symptoms; no bony pathology, a disinfected pulp, and the maturation of root
dentin in length and thickness. In spite of the various approaches of regenerative endodontics, there are several
major challenges that remain to be improved: a) the endodontic root canal is a strong harbor of the endodontic
bacterial biofilm and the fundamental etiologic factors of recurrent endodontic diseases, (b) tooth discolorations
are caused by antibiotics and filling materials, (c) cervical root fractures are caused by endodontic medicaments,
(d) pulp tissue is not vascularized nor innervated, and (e) the dentin matrix is not developed with adequate root
thickness and length. Generally, current clinical protocols and recent studies have shown a limited success of the
pulp-dentin tissue regeneration. Throughout the various approaches, the construction of biomimetic microenvironments
of pulp-dentin tissue is a key concept of the tissue engineering based regenerative endodontics. The biomimetic
microenvironments are composed of a synthetic nano-scaled polymeric fiber structure that mimics native pulp
ECM and functions as a scaffold of the pulp-dentin tissue complex. They will provide a framework of the pulp
ECM, can deliver selective bioactive molecules, and may recruit pluripotent stem cells from the vicinity of the pulp
apex. The polymeric nanofibers are produced by methods of self-assembly, electrospinning, and phase separation. In
order to be applied to biomedical use, the polymeric nanofibers require biocompatibility, stability, and biodegradability.
Therefore, this review focuses on the development and application of the biomimetic microenvironments of
pulp-dentin tissue among the current regenerative endodontics.
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Background
Regenerative endodontics has been proposed to replace
damaged and underdeveloped tooth structures with nor-
mal pulp-dentin tissue based on the concept of tissue
engineering [1–3] by providing natural extracellular
matrix (ECM) mimicking environment; stem cells, signal-
ing molecules, and scaffolds [4–7]. Clinical success of the
regenerative endodontics can be evidenced by absence of
signs and symptoms; no bony pathology, a disinfected
pulp, and the maturation of root dentin in length and

thickness [6]. Current endodontic regeneration is often re-
ferred to as revascularization which disinfects the root
canal using an antibiotic mixture and irritating the root
apex tissue to form a blood clot inside the root canal to
act as a natural scaffold and to support pulp-dentin stem
cell proliferation and differentiation [6, 8, 9]. A blood clot
can function as a scaffold for the ingrowth of new tissue
since it consists of cross-linked fibrin [9, 10]. This is the
pathway for migration of cells and helps with the growth
and differentiation factors [5]. Biodegradable scaffolds
have been developed to deliver dental mesenchymal stem
cells [4, 11]. However, recent studies reported that the re-
generated tissues from the revascularization are mainly
dentin-like structure [12], cementum-like, and bone-like
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periodontal tissues [13–16]. Furthermore, the composition
of the cells, signaling molecules, and scaffolds are not
controllable to promote the pulp-dentin regeneration
[6, 17]. Yet, there are still concerns about stem cell
resources, required amount, transplantation, and im-
mune responses [18]. Recently, the concept of cell
homing has been developed by the recruitment of en-
dogenous mesenchymal stem cells around pulp apex
tissue [12, 19, 20]. There are still several macromole-
cules under investigation to recruit the endogenous
pulp cells efficiently using chemo-attractants, ECM
molecules [21], or platelet-rich plasma [22].
Despite the variety of approaches of regenerative end-

odontics, there are several major challenges that remain:
(a) The endodontic root canal is a strong harbor of the
endodontic bacterial biofilm and the fundamental etio-
logic factors of recurrent endodontic diseases; therefore,
effective disinfection is critical for the success of pulp-
dentin regeneration [6]; (b) Tooth discolorations were
caused by minocycline (MC) [23] from the triple anti-
biotic mixture [8, 24] or mineral trioxide aggregates
(MTA) [25]; (c) Cervical root fractures were reported
due to the calcium hydroxide (Ca(OH)2) [26–28]; (d)
The scaffold should be biocompatible and biodegradable
[29, 30]; And (e) the pulp-dentin complex should be
highly vascularized with innervated pulp as well as a
dentin matrix with adequate root thickness and length
[4, 6]. Overall, the current clinical protocols have limited
success in the regeneration of the pulp-dentin tissue.
Tissue engineering is the application of life sciences and

biomaterials engineering for the development and ad-
vancement of tissue mimicking structures and the func-
tion of their natural counterparts [1, 31]. Existing cells,

biomaterials, and the oral cavity’s natural chemistry will be
utilized to synthesize a natural-like microenvironment.
Therefore, this review focuses on the development and
application of the biomimetic microenvironments of pulp-
dentin tissue among the current regenerative endodontics.

Review
Anatomy of pulp-dentin complex
The dental pulp is comprised of loose connective tissues
originated from the dental papilla of the tooth germ and
their close proximity and interdependence cause the for-
mation of the pulp-dentin complex separated by the
outer layer of the dental papilla (odontoblast layer) [32].
Dentin and pulp tissue are confined with enamel tissue,
which is not exposed on oral cavity; thus the proper un-
derstanding of the pulp-dentin complex is crucial for the
development and progression of microenvironment-
based regeneration. Mature dentin is a mineralized form
of the collagen-based predentin matrix and its crystalline
structure primarily consists of hydroxyapatite and water
that surrounds the dental pulp [33]. The pulp consists of
pulp cells, odontoblasts, endothelial cells, neurons, im-
mune system cells, and the ECM, which is crucial in
maintaining the function of healthy teeth [34, 35]. The
apical foramen of the tooth allows for nutrients to be
supplied and waste to be excreted through blood vessels
[36]. Figure 1 demonstrates the characteristics of an im-
mature tooth having an open apex, large canal, and a
short root, which make the new tissue easily develop
into the root canal space. Further the new tissue ultim-
ately is regenerated into the coronal pulp chamber [37],
which will promote revascularization and reinnervation
[11]. On the other hand, a permanent tooth with a

Fig. 1 Anatomy of tooth; (a) a healthy immature tooth with the distinct open root apex surrounded by dental papilla. b a healthy mature tooth
with a closed root apex
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mature apex with a small canal may only have a limited
amount of blood supply to allow ingrowth of tissue into
the root canal space [38].

Root end closure (Apexification)
Steps for current revascularization for necrotic immature
teeth involve opening the root canal and disinfecting with
sodium hypochlorite (NaOCl). Lower concentrations
(1.5 %) of NaOCl and saline are used with an irrigating
needle positioned about 1 mm from root end, to minimize
cytotoxicity to stem cells in the apical tissues [39, 40].
Then, the area of the root canal is filled with a triple anti-
biotic paste, consisting of ciprofloxacin, metronidazole,
and minocycline with inactive carriers (Macrogol oint-
ment and Propylene glycol) [24, 37], for one to four weeks
and sealed with temporary restorative material such as
Cavit™, IRM™, glass-ionomer or another temporary mater-
ial [39]. At the consequent follow up, the treated root
canal is accessed to remove the antibiotic paste upon the
re-evaluation of the signs and symptoms, irrigated with
17 % Ethylenediaminetetraacetic acid (EDTA) to release
growth factors from the dentin [41], and the root apex is
stimulated to form a blood clot into canal by over-
instrumenting endodontic files and bleeding is confined at
the level of cemento-enamel junction avoiding tooth
discoloration. A resorbable matrix (CollaPlug™, Collacote™,
or CollaTape™) is placed on top of the blood clot, then
sealed with a MTA with/without Ca(OH)2 as a capping
material [39, 42–45]. Several challenges were reported
from the apexification procedure of immature necrotic
teeth [42].

Challenges for apexification procedures
Discoloration of tooth
One of the main problems from the use of the current
protocol is the discoloration of the tooth crown due to
the use of tetracycline (e.g. minocycline) in the triple
antibiotic mixture [24, 46, 47]. Therefore, minocycline
was replaced with other equivalent antibiotics in recent
studies (e.g. cephalosporin, amoxicillin etc.,) resulting in
no further discoloration [42, 48, 49]. Other studies
showed that the combination of metronidazole and cip-
rofloxacin with any of these antibiotics was just as effect-
ive in sterilizing carious and endodontic lesions [49].
Another solution to avoid the tooth discoloration can be
observed in a modified protocol by sealing the dentinal
tubules using MTA below the gingival margin [23, 47].
Along with the sealing dentinal tubules, intra-coronal
bleaching with sodium perborate using white MTA in-
stead of grey MTA is also suggested [23].

Cervical root fracture
Traditionally, Ca(OH)2 was used for the apexification
procedure of the immature root with pulpal necrosis as

the intra-canal medicament [50]. In spite of the reported
clinical success, there are potential complications for the
traditional protocol [27, 51]. Due to its high pH, calcium
hydroxide can cause necrosis of tissues that could poten-
tially differentiate into new pulp. Apexification proce-
dures can leave the immature tooth fragile because the
root remains short with thin, radicular walls, making the
tooth more susceptible to fracture [51]. In cases disin-
fected by calcium hydroxide, root canal calcification/ob-
literation was observed [52–54]. Studies conducted by
Andreasen and other researchers have demonstrated
that the traditional use of long-term application of
Ca(OH)2 can lead to a weaker tooth more susceptible to
fracture [27, 55, 56]. In addition, Ca(OH)2 procedure re-
quires a long treatment period for the formation of the
calcified barrier from 3 to 24 months with multiple ap-
plications [50, 57].

Creation of blood clot
In the current protocol, blood clot is created by over-
instrumenting beyond the root apex to provide scaffold
inducing source of growth factors and repairing pulp tis-
sue [9, 42, 58, 59]. The induced blood clot may serve as
a natural scaffold to allow the migration of stem cells
along the canal [8, 38]. However, the inability to consist-
ently produce an ideal blood clot was also observed [42]
and limited tissue regeneration was observed. Absence
of a blood clot would hinder such a migration, which
may be caused by the vasoconstrictor epinephrine in
the local anesthetic solution [38, 42]. To resolve the
issues, local anesthetic without a vasoconstrictor can
be chosen [42]. Meanwhile, there are concerns for the
stimulated pulp bleeding which may not be the ideal
procedure or function as a scaffold to induce the
pluripotent stem cells resulting uncertain pulp-dentin
tissue regeneration [4, 20].

Poor root development
Ideal root development pattern in immature teeth would
include an increase in root length and wall thickness
with formation of the root apex [15]. However, tooth ne-
crosis followed by regenerative endodontic treatments
has been reported to have an absence of increase in root
length and root wall thickness, or a lack of tooth apex
formation [54, 60, 61].
A retrospective evaluation of radiographic outcomes

discovered that regenerative endodontic treatment with
triple antibiotic dressing increased root length more
than MTA apexification and root wall thickness signifi-
cantly more than either Ca(OH)2 or formocresol [62].
Yet, the replaced structures were found to be periodon-
tal tooth structures such as cementum-like, bone-like, or
fibrous connective tissue structures by histologic sec-
tions [13–15, 63]. Yamauchi et al. attempted to improve
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dentin formation through the use of a cross-linked colla-
gen scaffold in the canal spaces of dogs with apical peri-
odontitis. The results showed the formation of distinct
mineralized tissues, dentin-associated mineralized tissue
(DAMT) and bony islands (BIs) [64]. Through immuno-
histochemical analysis, it was determined that DAMT
resembled cementum without any vasculature. The BIs
were found to resemble bone because it was vascularized
with lacunae and “bone marrow-like” structures [65].
However, there was no evidence of pulp-like tissue or
dentin-like structures in any of specimens, which are the
key components in endodontic tissue regeneration.
Yamauchi et al. recommend the incorporation of “some
factors into the scaffold that facilitate the differentiation
of stem cells to odontoblasts” in order to create the
pulp-dentin complex [64].

Cytotoxicity
Intracanal medicament, antibiotics can induce cytotoxic
effect on dental pulp stem cells [49]; it can be due to the
lowered pH from the antibiotics, minocycline hydro-
chloride and ciprofloxacin hydrochloride (HCl), which
are used in the triple antibiotic mixture. The release of
hydrogen ions from HCl groups resulted in an acidic
condition, which can be an unfavorable condition for
culturing cells [66]. Conversely, recent in vitro cytotox-
icity studies demonstrated that metronidazole did not
inversely affect human dental pulp cells (DPCs) and ap-
ical papilla cells (APCs) even at the 25.00 mg/mL con-
centration. Metronidazole solution may have a neutral
pH, which can explain why cytotoxicity did not occur
[67]. On the other hand, the triple antibiotic at 0.39 mg/
mL had a less cytotoxic effect on DPCs and APCs viabil-
ity [67]. The single antibiotic with the concentrations of
0.024 μg/mL maintained dental pulp cell viability for
7 days [67]. Also, lower than 2.5 mg/mL of the triple
antibiotic and Ca(OH)2 demonstrated no cytotoxicity on
the DPCs using lactate dehydrogenase activity assay [68].
Therefore, the concentration of triple antibiotic in clin-
ical usage suggested to be adjusted not to cause cytotox-
icity on the remaining vital tissues.

Development of regenerative endodontic procedures
(REP)
Tooth development is the multistage process between
oral epithelium and mesenchymal origin, resulting in the
formation of the dentin matrix and pulp-dentin com-
plex. Ectomesenchymal stem cells from dental papilla
differentiate into dentin-forming odontoblasts [69, 70].
Hertwig’s epithelial root sheath (HERS) from the inner
and outer enamel epithelium are critical components in
the process since they guide the underlying mesenchy-
mal cells from the dental papilla and follicle to differen-
tiate into odontoblast, pulp fibroblast, and cementoblast

of the root [14]. Through this development, root dentin
would increase in length and thickness.
In a study conducted by Murray et al., the researchers

used the term “regenerative endodontic procedures”
(REPs), which is a ‘biologically based procedure designed
to replace damaged structures’ such as root dentin along
with cells of the pulp-dentin complex [2]. The goal in
REP is to provide a suitable environment in the root
canal that will promote repopulation of the osteo/odonto
progenitor stem cells, regeneration of pulp tissue, and
continued root development [36]. Endodontic treatment
utilizing osteo/odonto progenitor stem cells in the apical
papilla is resistant to the infection and necrosis caused
by proximity to periodontal blood supply [38].
REP has been shown to have distinct differentiation po-

tential using mesenchymal stem cells markers [39, 71]. In a
study conducted by Hristov et al., blood vessels were identi-
fied through the use of double-immunostaining for CD31/
collagen-IV and Vascular endothelial growth factor
(VEGF)R2/Collagen-IV; the process of revascularization
was occurring in the endothelial progenitor cells during
their differentiation [72]. Despite the lack of REP-associated
clinical trials, clinicians continue to use this method for
treatment. The American Association of Endodontics
(AAE) commented on this controversy and said that regen-
erative endodontics is ‘one of the most exciting new devel-
opments in dentistry today.’ After this, the AAE developed
treatment considerations and asked practitioners to use this
approach while keeping the new research findings in mind
[39, 73]. Therefore, the REP may provide a sufficient disin-
fection and influence cell survival, migration, angiogenesis,
proliferation, and differentiation [62].

Revascularization or Revitalization
The formation of blood vessels around the teeth that pro-
vide blood supply in teeth is known as vascularization,
which is important in tooth development and function [8].
Therefore, the term “revascularization” was coined from a
case report describing the re-establishment of blood sup-
ply in teeth with incomplete root formation after an auto-
transplantation or replantation. In a study conducted by
Iwaya et al., revascularization was suggested to treat an
immature permanent tooth with ‘apical periodontics and
sinus tract,’ as an alternative procedure to apexification
[26, 74]. As demonstrated by Kling et al., successful regen-
eration is dependent on the rates of formation of new tis-
sues versus the bacterial growth. If the radiographic
opening is more than 1.1 mm, the incidence of revascular-
ization is enhanced. As a part of the revascularization
treatment, a blood clot is created after the canal is disin-
fected to act as a matrix for the growth of new tissue in
the space [75]. Banchs and Trope used a double seal with
MTA and bonded resin to prevent any bacteria from in-
vading the pulp space before the revascularization could
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occur [8]. Along the same lines, “revitalization” is a term
that describes an endodontic procedure used to rejuvenate
tooth vitality in the case of necrotic stages; “regeneration”
in endodontics has been defined as procedures of re-
placing lost or damaged pulp-dentin tissues complex [2].
However, histological studies show that the tissue found
in root canals may not be through the exact regeneration
process, but instead through healing process which is
known as “repair”. The repair of the tissue has been used
when the healed tissue inside the root canal recovers the
similar form and elements of pulp tissue [76].

Bioengineering approaches for REP
Dental stem cells
The fields of stem-cell based pulp-dentin regeneration
along with cell-free approaches have been developed. Re-
cently, a new population of mesenchymal stem cells
(MSCs) has been discovered stem cells from the apical
papilla (SCAP) of immature teeth and stem cells from
human exfoliated deciduous teeth (SHED) derived from
pulp tissue or the precursor of pulp [77–79]. They have
been shown to be distinct from dental pulp stem cells
(DPSCs) through histologic, immunohistochemical, cellu-
lar, and molecular analyses [80], and seem to be respon-
sible for dentin formation in the root [38]. Autologous
DPSCs with growth factor, bone morphogenetic proteins
(BMP) 2 has successfully shown partial pulp regeneration
in a dog model [81]. Furthermore, DPSCs was shown to
produce neurotrophic factors to induce neural tissue de-
velopment [77, 82]. Besides SCAP, which has shown
promising pulp regeneration capability, subpopulations of
pulp stem cells, bone marrow MSCs (BMMSCs) and
adipose tissue-derived MSCs (ADMSCs) also can re-
generate pulp tissue [83]. A growing amount of evi-
dence is demonstrating that SCAP is the source of the
primary odontoblasts for the formation of the root
dentin, whereas DPSCs are the source of replacement
odontoblasts. Critical roles of the SCAP for the contin-
ued root formation are highlighted [38] and the SCAP
and other type of stem cells (e.g. periodontal ligament
stem cells) can be combined for the root regeneration
[78]. In order to evaluate the regenerative potential,
DPSCs and SCAP were encapsulated into a scaffold and
inserted into section of human tooth root canal and
transplanted into severe combined immunodeficiency
mice subcutaneously for three to four months; as a re-
sult, pulp space was filled with vascularized pulp-like
tissue and uniform dentin-like layer at dentin wall and
MTA cement [11]. Therefore, a stem cell based engin-
eering approach can provide realistic pulp-dentin re-
generation. In addition, vascularization is a critical
component of pulp-dentin regeneration, which can be
accelerated with several angiogenic factors; VEGF and
platelet-derived growth factor [84–86].

Nitric oxide
Angiogenesis is an important process that is required for
many pathological and wound healing processes. VEGF
is an inducer of angiogenesis that promotes the vessel
formation. Nitric oxide (NO) is a lipophilic molecule
that can easily permeate biological membrane barriers
and has been found to be a potent vasodilator [87] and
the amount of NO can also regulate VEGF [88]. In
addition, NO releasing dendrimers are reported as ef-
fective antibacterial agents [89, 90]. They tested a series
of NO-releasing poly (propylene imine) (PPI) dendri-
mers and control PPI dendrimers (non-NO-releasing)
against Gram-positive and Gram-negative pathogenic
bacteria. It was found that the NO-releasing PPI dendri-
mers killed > 99.99 % of all bacterial strain tested with a
minimal toxicity to mammalian fibroblasts [89]. Through
this dual function of NO, NO releasing scaffolds can be
utilized in REP and other tissue engineering fields.

Bone morphogenetic proteins
Bone morphogenetic proteins (BMPs) have been impli-
cated in tooth development, and the expression of
BMP2 is increased during the terminal differentiation of
odontoblasts [91, 92]. Beads soaked in human recombin-
ant BMP2 induce the mRNA expression of dentin sialo-
phosphoprotein (DSPP), the differentiation marker of
odontoblasts and indication of producing of dentin
matrix proteins after implantation onto dental papilla in
organ culture. BMP2 also induces a large amount of rep-
arative dentin on the amputated pulp in vivo [93]. BMP2
may play a role in regulating the differentiation of pulp
cells into odontoblastic lineage and also stimulate
reparative dentin formation [92].

Enamel-like fluorapatite surfaces
Previous studies have also demonstrated good biocom-
patibility of both the ordered (OR) and disordered (DS)
Fluorapatite (FA) crystal surfaces in providing a favor-
able environment for functional cell-matrix interactions
of human DPSCs [94, 95]. In addition, studies have
shown long-term growth of human DPSCs. Specifically,
enhanced cellular response of DPSCs to the OR FA
crystal surface has been observed [95, 96]. This can be
further manipulated by treating with dentin-inducing-
supplement to produce a dentin/enamel superstructure
[94, 95]. Studies have shown that FA crystal surfaces, espe-
cially the OR FA surface, indeed can and did mimic the
physical structure of enamel and also provided a favorable
extracellular microenvironment for the cells [95, 96]. Fur-
thermore, FA crystal surfaces induced and stimulated dif-
ferentiation of human DPSCs and mineralization of tissue
formation without a mineralization supplement. Such
findings display the promising benefits of utilizing FA
crystal surfaces as a simple biomimetic model for dentin
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regeneration, enamel/dentin/pulp complex creation, and
also as a scaffold for hard tissue engineering [96].

Platelet-rich plasma
Platelet-rich plasma (PRP) contains multiple growth fac-
tors, which include platelet-derived growth factor, trans-
forming growth factor b, and insulin-like growth factor
[97]. Thus, PRP may be a good supplement for cell-
based pulp/dentin regeneration. PRP, which can be
derived from a patient’s own blood, is easy to prepare
and can also form a three-dimensional fibrin matrix that
can act as a scaffold [36, 98, 99]. An in vitro study
showed that PRP can enhance the proliferation and dif-
ferentiation of human DPSCs [100]. In the present study,
only PRP or the combination of PRP and DPSCs did not
enhance the true regeneration of necrotic tissue rather
stimulate tissue repair with newly formed cementum
like, bone like, and connective tissues [101]. Another
collagen scaffold used by Iohara et al. to carry DPSCs
into the canals may provide a better condition for pulp
regeneration compared [102]. The in vitro study showed
that, although PRP can enhance mineralization differen-
tiation of DPSCs, it is not clear whether PRP enhances
dentinogenesis (i.e., PRP may not promote pulp-dentin
regeneration) [100].

Cell homing
Some researchers have also seen positive results of the re-
generation of pulp-like tissue through chemotaxis induced
cell homing [12, 19, 20]. The cell homing is a process, mi-
gration of mobilized hematopoietic stem cells via vascular
structure toward certain tissues (e.g. any organs, injured
tissues) using active navigation [103–105]. This concept
leaves potential pulp-dentin re-cellularization and revas-
cularization with or without active apical papilla tissue. A
variation of pulp-dentin regeneration can be resulted from
the combination of cell homing with cell transplantation
and a variety of the growth factors [76]. Therefore, the
migrated SCAP in periapical tissues is reported to have a
positive role to be differentiated into pulp-dentin forming
cells [38, 78]. However, the migrated MSCs in periapical
tissues may form ectopic periodontal tissue in the pulp
space [13, 14]. Besides, BMSCs are also considered for mi-
grated source of forming pulp tissue [106]. During the
homing process, various growth factors play a critical role
to assist stem cells; for example, BMP7 was delivered to
promote the regeneration of dentin-like tissue and create
an ideal microenvironment [12]. Stem/progenitor cell-
based approaches are also being studied by researchers.
Stem/progenitor cells from apical papilla and DPSCs
were isolated and seeded onto a synthetic porous scaf-
folds consisting of poly-D, L-lactide and glycolide [107].
Subsequently, dentin-like tissue was observed express-
ing by dentin sialophosphoprotein, bone sialoprotein,

alkaline phosphatase, and CD105 as would their natural
counterparts [107].

Biomimetic microenvironments
To regenerate the function and form of the pulp-
dentin complex, the construction of the biomimetic
microenvironment is a key factor. Cells respond differ-
ently to physicochemical and mechanical properties of
the microenvironment. The interactions between cells
and the ECM control differentiation, migration, and
proliferation, as well as tissue remodeling. For this
reason, an ECM mimicking microenvironment has
been designed by incorporating various moieties and
features derived from the ECM. Biomimetic environ-
ments, such as ECM microenvironments through peptide
amphiphiles (PA), cell homing, stems cells and through
growth factors, have been developed [1, 8, 26, 107].
ECM proteins potentially carry problems for clinical

applications including undesirable immune responses,
higher risks for infection, variety in biological sources,
and increased clinical costs [108]. To overcome such
limitations, small peptide sequences derived from ECM
proteins have been utilized such as Gly-Arg-Gly-Asp-Ser
(GRGS) [109, 110]. However, these isolated ECM pep-
tides still possess some limitations of encapsulating bio-
materials. For example, after implantation, entrapping
cells in photo-polymerized biomaterials can potentially
have many problems, such as the formation of fibrotic
processes, poor degradation of the scaffold, and local
and/or systemic toxicity [111]. Studies have also shown
that different compositions and concentrations of algin-
ate can affect the cellular overgrowth of implanted cap-
sules. This can be due to the formation of the metabolic
barriers to nutrient diffusion around the implant if inad-
equate levels of the material are used [112]. To over-
come such limitations, nano-scale PA nanomatrix gels
[113] have been proposed as a promising solution by
synthetically recapitulating the ECM structure as shown
in Figs. 2 and 3. PA nanomatrix gel possesses such
qualities: rapid gel-like 3D network formation by self-
assembly, versatility to incorporate various cell adhesive
moieties, and cell-mediated degradable sites (matrix
metalloproteinase-2) for progressive scaffold degradation
and eventual replacement by host-ECM [114].
The PA is a hydrophilic head, consisting of a func-

tional peptide sequence, attached to a hydrophobic alkyl
tail. The internal peptide structure can be modified to
mimic the characteristic properties of the natural ECM
[115–118]. Furthermore, PA self-assembles into long cy-
lindrical structures which are 8–10 nm in diameter and
up to several microns in length. As seen in Fig. 4,
Kaushik et al. have developed a biomimetic antibiotic re-
leasing nanomatrix gel that demonstrates synergistic anti-
bacterial effects, which may be effective for root canal
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disinfections and eliminates the use of minocycline, which is
used in the traditional protocol [119]. The development of the
gel, which uses PA for the encapsulation of the antibiotics to
create a sustained local release drug delivery system, is still in
preliminary stages but shows very promising results in early
studies. The developed gel, which contains ciprofloxacin and
metronidazole, was tested against two prominent bacterial
strains in endodontic infections, E. faecalis and T. denticola.
Their results portrayed that the developed gel had a greater
synergistic antibacterial effect than the antibiotics alone [119].

Animal models for microenvironment viability
Recently, there are DPSCs that have been used in both
small and large animals, which demonstrate that pulp or
dentin like tissues are able to regenerate either partially or
completely for the root canal space [84]. An experimental
animal model is required with comparable “anatomical,
physiologic, histologic, and pathologic characteristics to the
ultimate treatment cohort [120].” This means that the ani-
mal model should have relatively large teeth that are easily
accessible and able to be radiographed. It is also preferred

Fig. 2 Engineered nano-scale scaffold for the regenerative endodontics treatment for an infected tooth; after removal of infected pulp-dentin tissue;
the root canal is irrigated with NaOCl and EDTA. Engineered nano-scale scaffold containing a mixture of antibiotics, growth factors, and/or stem cells is
applied to the root canal

Fig. 3 Regenerated pulp-dentin tissue with closed root apex; regenerated pulp-dentin tissue with closed root apex is observed after the regenerative
endodontic treatment using an engineered nano-scale scaffold. Removed coronal structure is restored with adhesive materials with base sealing
materials. Plus (+) signs indicate the area of dentin formation
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that the model be inexpensive and readily available. The ad-
vantages and disadvantages of various animal models, in-
cluding rats, cats, ferrets, dogs, and primates are discussed.

Rats
Rats and mice are the preferred animal model in many
fields of research because they are inexpensive, convenient,
and well understood. They are convenient because they
are small and easily maintained, and can be bought in rela-
tively large quantities for low prices. Unfortunately, ro-
dents’ teeth are too small for experiments in regenerative
endodontics, though they have been used successfully in
studies regarding pulp and periapical tissue reactions
[121]. Similarly, guinea pigs and rabbits have teeth that are
simply too small for endodontic regenerative studies. A
study conducted by Zhao et al. used transplanted rat teeth,
and demonstrated that in some cases there was revascular-
ization of the pulp, and dentin-like structures were able to
form on the root wall [122]. This auto-transplantation
study may provide insight into the biological process of
the regeneration of the pulp-dentin complex.

Ferrets
Numerous areas of research have utilized the ferret in-
cluding neuroscience, pathogenesis, endocrinology, and
the study of numerous diseases. However, the ferret has
not been used extensively in the field of endodontics.

Due to the accessibility and larger size of the ferret’s
single-rooted cuspid, the ferret is more suitable for end-
odontic regenerative studies than rodents and rabbits.
Additionally, the ferret is subject to less ethical objec-
tions than dogs, cats, and primates as well as being more
readily available and less expensive [123]. A study in
2011, conducted by Torabinejad et al., investigated into
the use of ferret cuspid as a model for regenerative end-
odontics using radiography [120]. It was determined that a
ferret’s cuspid teeth erupted around 50 days after birth with
open apices. At 52 days, the HERS “was extending to form
the root, with very thin walls, a wide canal space, and an
open apex” [120]. Apical closure began at approximately
90 days, continuing until complete closure observed at
133 days. The study concluded the most appropriate time
to conduct studies on ferret teeth is during the 50–90 days
when the open apex allows communication between the
root canal system and the periapical tissue. Torabinejad et al.
stress that more research into the ferret model is required,
with the need for the development of a stem cell population
in the ferret pulp and periapical tissues, in addition to the
development of specific antibodies that can decisively iden-
tify relevant dental tissues [120].

Cats
Cats can provide four large single-rooted cuspids that
are similar in craniofacial characteristics to humans.

Fig. 4 General scheme of the design for the biomimetic approach; (a). Synthesis of peptide amphiphiles (PAs), (b). Self-assembly of PAs, (c). Encapsulation
of antibiotics, (d). Formation of the nanomatrix gel, Modified with permission from Kaushik et al. [119]

Kaushik et al. Biomaterials Research  (2016) 20:14 Page 8 of 12



Wilson found that all permanent teeth before the age of
six months are erupted and have open apices, with clos-
ure of cuspids occurring approximately at nine months,
and complete closure at eleven months [124]. Cats are
relatively expensive to purchase and maintain. Addition-
ally, there has been an increase in public objection to
the use of cats in research because they are common
domesticated pets in numerous cultures.

Dogs
Dogs have been used in various endodontic researches,
including regenerative studies [13, 64, 125, 126]. Apices
of permanent teeth remain open until 6 months of age
and will be closed at 10 months old [127]. Khademi et al.
used single-rooted premolars and maxillary incisors from
3 immature mongrel dog’s to induce periapical lesions for
the evaluation of the success rate of a revascularization
treatment protocol [125]. Mandibular incisors were
deemed unsuitable due to their susceptibility to fracture
under large masticatory forces, and the apex closes before
sufficient dentinal wall can develop. In addition, the prox-
imity of mandibular roots makes it difficult to take clear
radiographic images. Induced necrotic-infected teeth can
develop periapical lesions after about 28 days. In the dog
model, the “dental pulp tissue possesses a capacity for
spontaneous repair by the formation of reparative dentin,
but only up to a defect size of 2 mm in diameter and
1 mm in depth [126].”

Primates
Primates, being the closest ancestor to humans, are the
ideal animal models for a lot of medical and dental re-
search [121]. Although longitudinal studies on the age of
eruption and root end closure in different species of
primates are unavailable, Anemone et al. studied apical
closure radiographically in chimpanzees. Although pri-
mates are the most similar to humans, they are not used
extensively due to their high cost to purchase and main-
tain in addition to the difficulty of handling. There are also
the ethical problems that come with the fact that primates
are so similar to humans.

Conclusions
This review article is focused on the current prospects on
biomimetic microenvironments as a scaffold of pulp-
dentin complex regeneration via current tissue engineer-
ing concepts. The proper biomimetic microenvironments
can be constructed upon the synthetic nano-scaled pep-
tide amphiphiles through bioengineered regeneration
process in combination with various bioactive molecules,
growth factors, and stem cells to mimic native pulp
ECM. From the animal models, currently the dog
model is favorable to perform regenerative endodontic
studies due to its availability and similarity of the size

and number of teeth for the creation of a biomimetic
microenvironment. In spite of the promising data from
in vitro and some animal experiments, the future ad-
vances in pulp-dentin tissue regeneration are required
to show the functional tissue regeneration in addition
to the favorable clinical outcomes.
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