TY - STD TI - Kouyoumdjian JA. Peripheral nerve injuries: a retrospective survey of 456 cases. Muscle Nerve. 2006; 34(6):785–8. https://doi.org/10.1002/mus.20624. ID - ref1 ER - TY - STD TI - Nectow AR, Marra KG, Kaplan DL. Biomaterials for the development of peripheral nerve guidance conduits. Tissue Eng Part B Rev. 2012; 18(1):40–50. https://doi.org/10.1089/ten.TEB.2011.0240. ID - ref2 ER - TY - STD TI - Urbanski MM, Kingsbury L, Moussouros D, Kassim I, Mehjabeen S, Paknejad N, Melendez-Vasquez CV. Myelinating glia differentiation is regulated by extracellular matrix elasticity. Sci Rep. 2016; 6:33751. https://doi.org/10.1038/srep33751. ID - ref3 ER - TY - STD TI - Rosso G, Liashkovich I, Young P, Röhr D, Shahin V. Schwann cells and neurite outgrowth from embryonic dorsal root ganglions are highly mechanosensitive. Nanomed Nanotechnol Biol Med. 2017; 13(2):493–501. https://doi.org/10.1016/J.NANO.2016.06.011. ID - ref4 ER - TY - STD TI - López-Fagundo C, Bar-Kochba E, Livi LL, Hoffman-Kim D, Franck C. Three-dimensional traction forces of Schwann cells on compliant substrates. J R Soc Interface. 2014; 11(97):20140247. https://doi.org/10.1098/rsif.2014.0247. ID - ref5 ER - TY - STD TI - Lo CM, Wang HB, Dembo M, Wang Y-L. Cell movement is guided by the rigidity of the substrate. Biophys J. 2000; 79(1):144–52. https://doi.org/10.1016/S0006-3495(00)76279-5. ID - ref6 ER - TY - STD TI - Franze K, Janmey PA, Guck J. Mechanics in Neuronal Development and Repair. Annu Rev Biomed Eng; 15(1):227–51. https://doi.org/10.1146/annurev-bioeng-071811-150045. ID - ref7 ER - TY - STD TI - Wang HB, Dembo M, Hanks SK, Wang Y. Focal adhesion kinase is involved in mechanosensing during fibroblast migration. Proc Natl Acad Sci U S A. 2001; 98(20):11295–300. https://doi.org/10.1073/pnas.201201198. ID - ref8 ER - TY - STD TI - Wakatsuki S, Araki T, Sehara-Fujisawa A. Neuregulin-1/glial growth factor stimulates Schwann cell migration by inducing α5 β1 integrin-ErbB2-focal adhesion kinase complex formation. Genes Cells Devoted Mol Cellular Mech. 2014; 19(1):66–77. https://doi.org/10.1111/gtc.12108. ID - ref9 ER - TY - JOUR AU - Chen, L. M. AU - Bailey, D. AU - Fernandez-Valle, C. PY - 2000 DA - 2000// TI - Association of beta 1 integrin with focal adhesion kinase and paxillin in differentiating Schwann cells JO - J Neurosci Official J Soc Neurosci VL - 20 UR - https://doi.org/10.1523/JNEUROSCI.20-10-03776.2000 DO - 10.1523/JNEUROSCI.20-10-03776.2000 ID - Chen2000 ER - TY - STD TI - Gomez-Sanchez JA, Pilch KS, van der Lans M, Fazal SV, Benito C, Wagstaff LJ, Mirsky R, Jessen KR. After Nerve Injury, Lineage Tracing Shows That Myelin and Remak Schwann Cells Elongate Extensively and Branch to Form Repair Schwann Cells, Which Shorten Radically on Remyelination. J Neurosci Official J Soc Neurosci. 2017; 37(37):9086–99. https://doi.org/10.1523/JNEUROSCI.1453-17.2017. ID - ref11 ER - TY - STD TI - Parrinello S, Napoli I, Ribeiro S, Digby PW, Fedorova M, Parkinson DB, Doddrell RDS, Nakayama M, Adams RH, Lloyd AC. EphB signaling directs peripheral nerve regeneration through sox2-dependent Schwann cell sorting. Cell. 2010; 143(1):145–55. https://doi.org/10.1016/j.cell.2010.08.039. ID - ref12 ER - TY - STD TI - Wong JY, Velasco A, Rajagopalan P, Pham Q. Directed Movement of Vascular Smooth Muscle Cells on Gradient-Compliant Hydrogels †. 2003. https://doi.org/10.1021/LA026403P. ID - ref13 ER - TY - STD TI - Tse JR, Engler AJ, Tse JR, Engler AJ. Preparation of Hydrogel Substrates with Tunable Mechanical Properties. In: Curr Protoc Cell Biol. Hoboken: Wiley: 2010. p. 10–161101616. https://doi.org/10.1002/0471143030.cb1016s47. http://doi.wiley.com/10.1002/0471143030.cb1016s47. UR - http://doi.wiley.com/10.1002/0471143030.cb1016s47 ID - ref14 ER - TY - STD TI - Takigawa T, Morino Y, Urayama K, Masuda T. Osmotic Poisson’s Ratio and Equilibrium Stress of Poly(acrylamide) Gels. Polymer J. 1996; 28(11):1012–3. https://doi.org/10.1295/polymj.28.1012. ID - ref15 ER - TY - STD TI - Cordeliéres FP, Schindelin J. Manual Tracking Image J Plugin. Version 2.1.1. URL: https://imagej.net/Manual%20Tracking. UR - https://imagej.net/Manual%20Tracking ID - ref16 ER - TY - STD TI - Isenberg BC, Dimilla PA, Walker M, Kim S, Wong JY. Vascular smooth muscle cell durotaxis depends on substrate stiffness gradient strength. Biophys J. 2009; 97(5):1313–22. https://doi.org/10.1016/j.bpj.2009.06.021. ID - ref17 ER - TY - STD TI - Farrell BE, Daniele RP, Lauffenburger DA. Quantitative relationships between single-cell and cell-population model parameters for chemosensory migration responses of alveolar macrophages to C5a. Cell Motil Cytoskeleton. 1990; 16(4):279–93. https://doi.org/10.1002/cm.970160407. ID - ref18 ER - TY - STD TI - Georges PC, Miller WJ, Meaney DF, Sawyer ES, Janmey PA. Matrices with compliance comparable to that of brain tissue select neuronal over glial growth in mixed cortical cultures. Biophys J. 2006; 90(8):3012–8. https://doi.org/10.1529/BIOPHYSJ.105.073114. ID - ref19 ER - TY - STD TI - Fallenstein GT, Hulce VD, Melvin JW. Dynamic mechanical properties of human brain tissue. J Biomech. 1969; 2(3):217–26. https://doi.org/10.1016/0021-9290(69)90079-7. ID - ref20 ER - TY - STD TI - Chernousov MA, Yu WM, Chen ZL, Carey DJ, Strickland S. Regulation of Schwann cell function by the extracellular matrix. Glia. 2008; 56(14):1498–507. https://doi.org/10.1002/glia.20740. ID - ref21 ER - TY - STD TI - Hoffman-Kim D, Mitchel JA, Bellamkonda RV. Topography, cell response, and nerve regeneration. Annu Rev Biomed Eng. 2010; 12:203–31. https://doi.org/10.1146/annurev-bioeng-070909-105351. ID - ref22 ER - TY - STD TI - Peyton SR, Putnam AJ. Extracellular matrix rigidity governs smooth muscle cell motility in a biphasic fashion. J Cellular Physiol. 2005; 204(1):198–209. https://doi.org/10.1002/jcp.20274. ID - ref23 ER - TY - STD TI - Raucher D, Sheetz MP. Cell spreading and lamellipodial extension rate is regulated by membrane tension. J Cell Biol. 2000; 148(1):127–36. https://doi.org/10.1083/JCB.148.1.127. ID - ref24 ER - TY - STD TI - Chen G, Zhang Z, Wei Z, Cheng Q, Li X, Li W, Duan S, Gu X. Lysosomal exocytosis in Schwann cells contributes to axon remyelination. Glia. 2012; 60(2):295–305. https://doi.org/10.1002/glia.21263. ID - ref25 ER - TY - STD TI - Tse JR, Engler AJ. Stiffness gradients mimicking in vivo tissue variation regulate mesenchymal stem cell fate. PloS ONE. 2011; 6(1):15978. https://doi.org/10.1371/journal.pone.0015978. ID - ref26 ER - TY - STD TI - Belkas JS, Shoichet MS, Midha R. Peripheral nerve regeneration through guidance tubes. Neurol Res. 2004; 26(2):151–60. https://doi.org/10.1179/016164104225013798. ID - ref27 ER - TY - STD TI - Williams LR, Longo FM, Powell HC, Lundborg G, Varon S. Spatial-temporal progress of peripheral nerve regeneration within a silicone chamber: parameters for a bioassay. J Comp Neurol. 1983; 218(4):460–70. https://doi.org/10.1002/cne.902180409. ID - ref28 ER - TY - STD TI - van Oosten ASG, Vahabi M, Licup AJ, Sharma A, Galie PA, MacKintosh FC, Janmey PA. Uncoupling shear and uniaxial elastic moduli of semiflexible biopolymer networks: compression-softening and stretch-stiffening. Sci Rep. 2016; 6:19270. https://doi.org/10.1038/srep19270. ID - ref29 ER - TY - STD TI - Bollmann L, Koser DE, Shahapure R, Gautier HOB, Holzapfel GA, Scarcelli G, Gather MC, Ulbricht E, Franze K. Microglia mechanics: immune activation alters traction forces and durotaxis. Front Cell Neurosci. 2015; 9:363. https://doi.org/10.3389/fncel.2015.00363. ID - ref30 ER - TY - STD TI - Solon J, Levental I, Sengupta K, Georges PC, Janmey PA. Fibroblast adaptation and stiffness matching to soft elastic substrates. Biophys J. 2007; 93(12):4453–61. https://doi.org/10.1529/BIOPHYSJ.106.101386. ID - ref31 ER - TY - STD TI - Moshayedi P, da F Costa L, Christ A, Lacour SP, Fawcett J, Guck J, Franze K. Mechanosensitivity of astrocytes on optimized polyacrylamide gels analyzed by quantitative morphometry. J Phys Condens Matter. 2010; 22(19):194114. https://doi.org/10.1088/0953-8984/22/19/194114. ID - ref32 ER - TY - STD TI - Bhana B, Iyer RK, Chen WLK, Zhao R, Sider KL, Likhitpanichkul M, Simmons CA, Radisic M. Influence of substrate stiffness on the phenotype of heart cells. Biotechnol Bioeng. 2010; 105(6). https://doi.org/10.1002/bit.22647. ID - ref33 ER - TY - STD TI - Islam A, Younesi M, Mbimba T, Akkus O. Collagen substrate stiffness anisotropy affects cellular elongation, nuclear shape, and stem cell fate toward anisotropic tissue lineage. Adv Healthcare Mater. 2016; 5(17):2237–47. https://doi.org/10.1002/adhm.201600284. ID - ref34 ER - TY - STD TI - Grevesse T, Versaevel M, Circelli G, Desprez S, Gabriele S. A simple route to functionalize polyacrylamide hydrogels for the independent tuning of mechanotransduction cues. Lab Chip. 2013; 13(5):777. https://doi.org/10.1039/c2lc41168g. ID - ref35 ER - TY - STD TI - Lovett DB, Shekhar N, Nickerson JA, Roux KJ, Lele TP. Modulation of Nuclear Shape by Substrate Rigidity. Cel Mol Bioeng. 2013; 6(2):230–8. https://doi.org/10.1007/s12195-013-0270-2. ID - ref36 ER - TY - STD TI - Jessen KR, Mirsky R. The repair Schwann cell and its function in regenerating nerves. J Physiol. 2016; 594(13):3521–1. https://doi.org/10.1113/JP270874. ID - ref37 ER - TY - JOUR AU - Stoll, G. AU - Müller, H. W. PY - 1999 DA - 1999// TI - Nerve injury, axonal degeneration and neural regeneration: basic insights JO - Brain Pathol (Zurich, Switzerland) VL - 9 UR - https://doi.org/10.1111/j.1750-3639.1999.tb00229.x DO - 10.1111/j.1750-3639.1999.tb00229.x ID - Stoll1999 ER - TY - JOUR AU - Maniotis, A. J. AU - Chen, C. S. AU - Ingber, D. E. PY - 1997 DA - 1997// TI - Demonstration of mechanical connections between integrins, cytoskeletal filaments, and nucleoplasm that stabilize nuclear structure JO - Proc Natl Acad Sci U S A VL - 94 UR - https://doi.org/10.1073/pnas.94.3.849 DO - 10.1073/pnas.94.3.849 ID - Maniotis1997 ER - TY - STD TI - Engler A, Bacakova L, Newman C, Hategan A, Griffin M, Discher D. Substrate Compliance versus Ligand Density in Cell on Gel Responses. Biophys J. 2004; 86(1):617–28. https://doi.org/10.1016/S0006-3495(04)74140-5. ID - ref40 ER - TY - STD TI - Vladkova TG. Surface engineered polymeric biomaterials with improved biocontact properties. Int J Polymer Sci; 2010:1–22. https://doi.org/10.1155/2010/296094. ID - ref41 ER - TY - JOUR AU - Rosen, P. AU - Misfeldt, D. S. PY - 1980 DA - 1980// TI - Cell density determines epithelial migration in culture JO - Proc Natl Acad Sci U S A VL - 77 UR - https://doi.org/10.1073/pnas.77.8.4760 DO - 10.1073/pnas.77.8.4760 ID - Rosen1980 ER - TY - STD TI - Sazonova OV, Lee KL, Isenberg BC, Rich CB, Nugent MA, Wong JY. Cell-cell interactions mediate the response of vascular smooth muscle cells to substrate stiffness. Biophys J. 2011; 101(3):622–30. https://doi.org/10.1016/j.bpj.2011.06.051. ID - ref43 ER - TY - STD TI - Hadden WJ, Young JL, Holle AW, McFetridge ML, Kim DY, Wijesinghe P, Taylor-Weiner H, Wen JH, Lee AR, Bieback K, Vo BN, Sampson DD, Kennedy BF, Spatz JP, Engler AJ, Choi YS. Stem cell migration and mechanotransduction on linear stiffness gradient hydrogels. Proc Natl Acad Sci U S A. 2017; 114(22):5647–52. https://doi.org/10.1073/pnas.1618239114. ID - ref44 ER - TY - JOUR AU - Pelham, R. J. AU - Wang, Y. L. PY - 1997 DA - 1997// TI - Cell locomotion and focal adhesions are regulated by substrate flexibility JO - Proc Natl Acad Sci U S A VL - 94 UR - https://doi.org/10.1073/pnas.94.25.13661 DO - 10.1073/pnas.94.25.13661 ID - Pelham1997 ER - TY - STD TI - Oakes PW, Patel DC, Morin NA, Zitterbart DP, Fabry B, Reichner JS, Tang JX. Neutrophil morphology and migration are affected by substrate elasticity. Blood. 2009; 114(7):1387–95. https://doi.org/10.1182/blood-2008-11-191445. ID - ref46 ER - TY - STD TI - Vincent LG, Choi YS, Alonso-Latorre B, del Álamo JC, Engler AJ. Mesenchymal stem cell durotaxis depends on substrate stiffness gradient strength. Biotechnol J. 2013; 8(4):472–84. https://doi.org/10.1002/biot.201200205. ID - ref47 ER - TY - STD TI - Balgude AP, Yu X, Szymanski A, Bellamkonda RV. Agarose gel stiffness determines rate of DRG neurite extension in 3D cultures. Biomaterials. 2001; 22(10):1077–84. https://doi.org/10.1016/S0142-9612(00)00350-1. ID - ref48 ER - TY - STD TI - Previtera ML, Langhammer CG, Firestein BL. Effects of substrate stiffness and cell density on primary hippocampal cultures. J Biosci Bioeng. 2010; 110(4):459–70. https://doi.org/10.1016/j.jbiosc.2010.04.004. ID - ref49 ER - TY - STD TI - Previtera ML, Langhammer CG, Langrana NA, Firestein BL. Regulation of dendrite arborization by substrate stiffness is mediated by glutamate receptors. Ann Biomed Eng. 2010; 38(12):3733–43. https://doi.org/10.1007/s10439-010-0112-5. ID - ref50 ER - TY - STD TI - Flanagan LA, Ju YE, Marg B, Osterfield M, Janmey PA. Neurite branching on deformable substrates. Neuroreport. 2002; 13(18):2411–5. https://doi.org/10.1097/01.wnr.0000048003.96487.97. ID - ref51 ER - TY - STD TI - Cheung Y, Azeloglu E, Shiovitz D, Costa K, Seliktar D, Sia S. Microscale control of stiffness in a cell-adhesive substrate using microfluidics-based lithography. Angewandte Chemie Int Edition. 2009; 48(39):7188–92. https://doi.org/10.1002/anie.200900807. ID - ref52 ER - TY - STD TI - Kuo C. -H. R, Xian J, Brenton JD, Franze K, Sivaniah E. Complex Stiffness Gradient Substrates for Studying Mechanotactic Cell Migration. Adv Mater. 2012; 24(45):6059–64. https://doi.org/10.1002/adma.201202520. ID - ref53 ER - TY - STD TI - Marklein RA, Burdick JA. Spatially controlled hydrogel mechanics to modulate stem cell interactions. Soft Matter. 2010; 6(1):136–43. https://doi.org/10.1039/B916933D. ID - ref54 ER - TY - STD TI - Zaari N, Rajagopalan P, Kim SK, Engler AJ, Wong JY. Photopolymerization in microfluidic gradient generators: microscale control of substrate compliance to manipulate cell response. Adv Mater. 2004; 16(23-24):2133–7. https://doi.org/10.1002/adma.200400883. ID - ref55 ER - TY - STD TI - Hartman CD, Isenberg BC, Chua SG, Wong JY. Vascular smooth muscle cell durotaxis depends on extracellular matrix composition. https://doi.org/10.1073/pnas.1611324113. ID - ref56 ER - TY - STD TI - Kidoaki S, Sakashita H. Rectified cell migration on saw-like micro-elastically patterned hydrogels with asymmetric gradient ratchet teeth. PloS ONE. 2013; 8(10):78067. https://doi.org/10.1371/journal.pone.0078067. ID - ref57 ER - TY - STD TI - Kloxin AM, Benton JA, Anseth KS. In situ elasticity modulation with dynamic substrates to direct cell phenotype. Biomaterials. 2010; 31(1):1–8. https://doi.org/10.1016/j.biomaterials.2009.09.025. ID - ref58 ER -