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Behaviors of stem cells on carbon nanotube
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Abstract

Regulating stem cell microenvironment is one of the essential elements in stem cell culture. Recently, carbon
nanotube (CNT) has come into the spotlight as a biomaterial that retains unique properties. Based on its high
chemical stability, elasticity, mechanical strength, and electrical conductivity, CNT shows great potential as an
application for biomedical substrate. Also, properties of CNT could be further regulated by appropriate chemical
modifications of CNT. Recent studies reported that modulating the cellular microenvironment through the use of
CNT and chemically modified CNT as cell culture substrates can affect proliferation and differentiation of various
types of stem cells. This review summarizes the unique biological effects of CNT on stem cells.
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Introduction
Stem cells, which have the ability to self-renew and mul-
tipotently differentiate into several phenotypes, have
been regarded critical for groundbreaking therapy in the
field of regenerative medicine. Therefore, strategies to
promote their proliferation and control their differenti-
ation are subject of great interest. In tissue engineering,
mesenchymal stem cells (MSCs), neural stem cells (NSCs),
and embryonic stem cells (ESCs) can be induced to differ-
entiate into various terminally differentiated cells includ-
ing chondrocytes, osteoblasts, neurons, and myocytes
under specific culture conditions. These differentiated
cells can be injected directly into damaged tissue or conju-
gated with specific substrates, and used to regenerate
damaged tissues. MSCs, NSCs, and ESCs can be differenti-
ated into mature cells by modulating their cellular micro-
environment. One of the most effective ways to control
the fate of stem cells is by changing the properties of the
cell culture substrates, which can provide dynamic micro-
environmental and morphological cues for stem cell pro-
liferation and differentiation. CNT has emerged as a new
potential cellular culture substrate that could alter the be-
havior of stem cells [1].
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Review
This review briefly outlines the unique characteristics of
CNT and highlights the recent applications of CNT for
tissue engineering through stem cell differentiation. Also,
biocompatibility and toxicity of CNT will be discussed in
this review.
Carbon nanotube
CNT consists of a sheet/sheets of graphitic structure
rolled into a cylinder. Due to its hexagonal structure and
π electrons conjugation, CNT possesses high mechanical
strength, flexibility, and electrical conductivity [2,3].
Mainly three conventional methods have been used for
synthesis of CNT such as arc discharge, laser ablation,
and chemical vapor deposition methods. Arc discharge
and laser ablation methods are methods in which high
energy input, such as laser beam, induces the assembly
of carbon atoms. However, these have difficulties for large-
scale production. In the chemical vapor deposition
method, certain catalysts are used to assemble carbon
atoms into CNTs. The chemical vapor deposition method
can be done under mild condition [4]. CNTcan be catego-
rized into single-walled CNT (SWCNT), multi-walled
CNT (MWCNT), and functionalized CNT. SWCNT is
made up of a single sheet of graphene rolled up, and its
ends are closed with fullerene caps. MWCNT is made up
of multiple sheets of graphene cylinder. Functionalized
CNT is modified CNT with specific organic groups at-
tached on its surface. Its properties can be controlled in
many ways as CNT can be easily functionalized [5]. There
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are two types of CNT surface modifications: non-covalent
functionalization and covalent functionalization [6]. Non-
covalent functionalization involves coating or dispersion
of CNTs on hydrophilic macromolecules such as peptides,
single-stranded DNA, and polymers like polyethylene gly-
col or polyethleneimine (PEI) [7-9]. For example, by mix-
ing CNT with collagen, CNT gains greater resistance for
the use of three-dimensional arrays [10]. CNT covalent
functionalization is a method that covalently bonds CNT
molecules with proteins, surfactants or genetic species.
Covalent functionalization changes the physical and
chemical properties of CNT, such as its surface charge
and reactivity. For example, CNT surface charge can be
controlled through addition of functional groups. Figure 1
shows the surface of CNTs with different chemical groups
through various chemical reactions [11]. To terminate its
ends with negatively charged groups, pristine CNT was
refluxed in nitric acid. After removal of the metal catalyst,
CNT surface was modified with a carboxylic group, mak-
ing it a carboxylic functionalized CNT (CNT-COOH).
By addition of oxalyl chloride, CNT-COOH can be modi-
fied to acyl chloride form, CNT-COCl. For terminating
its ends with neutrally or positively charged group, CNT-
COCl was functionalized with poly-m-aminobenzene
Figure 1 Surface functionalizaton of CNTs. Schematic diagram showing th
with different chemical groups through various chemical reactions. (adapted
sulfonic acid and ethylenediamine, respectively [6]. Cur-
rently, by virtue of facile functionalization of CNT, CNT
has served as potent therapeutic vectors of genes, drug-
delivery vehicle, and culture substrate for stem cell differ-
entiation [12-14].

Stem cell differentiation on carbon nanotube
Stem cells play an important role in tissue engineering
and regenerative medicine because of their ability to
self-renew and differentiate. Controlling the fate of stem
cells is one of the most studied issues in tissue engineer-
ing. As a culture substrate, CNT has drawn tremendous
interests in tissue engineering as it has the ability to dy-
namically direct stem cells lineage. For example, CNT
has a high binding affinity to biological molecules such
as extracellular matrix (ECM) proteins. Due to its high
binding affinity to ECM proteins such as fibronectin,
CNT can efficiently control cellular behavior [15]. In
addition, as mentioned above, properties of CNT can be
easily modified to improve its biocompatibility as a cel-
lular culture substrate. So far, CNT has been a subject of
studies for culture of various stem cell lines, such as
neural stem cells, embryonic stem cells, and mesenchy-
mal stem cells.
e surface chemistry of CNTs. The surface of CNTs can be functionalized
from reference [11]).
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Neural stem cells
The unique mechanical and electrical properties of CNT
have been used in biological applications to design con-
ductive substrates, especially in neural tissue engineering
[16]. One of the first experiments that applied CNT as a
cell culture substrate investigated the efficacy of SWCNT/
PEI composite as a NSCs culture substrate [17]. In this
study, with the aid of SWCNT/PEI composite, NSCs dif-
ferentiation toward neurons and oligodendrocytes was en-
hanced. Not only the neural outgrowth was increased, but
also the expression of microtubule-associated protein 2
(MAP-2) was promoted. Moreover, it has been reported
before that morphological cues of the cell culture sub-
strate could impose an important effect on behavior of
neural cells [18]. Therefore, CNT, which is a nanoscale
biocompatible material, has been proposed as NSCs cul-
ture substrate for enhancing the neuronal differentiation
of NSCs [19,20]. Figure 2 shows that by controlling the
shape of the CNT substrates, the growth, polarization, and
differentiation of NSCs can be controlled. In shape-
controlled CNT substrates, NSCs show better differenti-
ation potential into astroglial and neural cells with in-
creased expression of GFAP and Tuj1 [21].

Embryonic stem cells
Not only CNT imposes great effects on neuronal differen-
tiation of NSCs, but also it has been reported to promote
Figure 2 Shape-controlled CNT substrates for hNSCs growth and pola
polarization-controlled neuronal differentiation of hNSCs. Shape-controlled
lineages. (b) SEM image of CNTs substrate. Scale bar represents 40 μm. (c)
laminin absorbed on the CNT substrate. Scale bar represents 200 μm. The i
the inset represents 2 μm. (d) Cell viability of hNSCs cultured on CNT subs
cultured on CNT substrates were alive (red) (adapted from reference [21]).
neural differention of human ESCs (hESCs). When hESCs
were seeded onto hydrophilic CNT-poly(acrylic acid)
composite, hESCs differentiation toward neuronal lineages
was elevated up to two-fold when compared to the hESCs
cultured with poly(L-ornithine) (PLO), the conventional
standard polymer for culturing neural cells. Moreover, the
substrate composite showed no effect on hESCs viability
and adhesion [22]. In addition, CNT/collagen composite
was reported to promote neural differentiation of hESCs.
Type I collagen, which is one of the major component of
ECMs that support neuronal cell types, was modified with
CNT. Not only CNT improved the biocompatibility of the
collagen, but also it heightened the interaction between
the collagen compound hESCs cultured on this CNT/col-
lagen composite differentiated into ectodermal lineage in
day 3, and into neural lineage in day 6, with enhanced ex-
pression of nestin [23]. Nestin is a representative marker
that identifies neural stem cells [24]. Also, poly(meth-
acrylic acid)-grafted CNT can greatly enhanced the differ-
entiation of hESCs into neural lineage compared to the
hESCs cultured on PLO substrate [25].

Mesenchymal stem cells
CNT can also promote the differentiation of human
mesenchymal stem cells (hMSCs). As a cell culture sub-
strate, CNT was reported to increase the surface rough-
ness of the substrate and promote high adsorption of
rization. (a) Schematic diagram showing the process of the
CNT substrates induced the differentiation of hNSCs into neuronal
Immunofluorescence image of anti-laminin (green) bound to the
nset shows AFM image of laminin-coated CNT substrate. Scale bar of
trates for 3 day proliferation. The data indicates that 98% of hNSCs
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ECM proteins such as fibronectin and vitronectin [15].
Using such properties of CNT, fibronectin-coated
SWCNT substrate was shown to enhance hMSCs spread-
ing compared to the conventional tissue culture plate, pro-
moting neural gene expression such as nestin and MAP-2,
a cytoskeletal protein in neurons and dendrites [26,27].
Also, on topological modified CNT substrates, hMSCs
show improved cell proliferation and osteogenic differen-
tiation. Square-patterned and aligned CNT substrates
promote the expression of core binding factor alpha1,
osteocalcin, and alkaline phosphatase which are a tran-
scription factor and an osteoblast specific gene, respect-
ively [28,29]. Figure 3 shows how the topography of CNT
substrates surfaces could affect the morphology of
hMSCs [28]. In addition, due to electrical properties of
CNT, CNT as a cellular substrate can provide electrical
stimulation to the cells. One study showed that the elec-
trical current imposed on CNT substrate can enhance
the differentiation of hMSCs toward cardiomyocyte
lineage [30].

Biocompatibility and toxicity
Developing a biocompatible and nontoxic substrate that
can facilitate stem cells proliferation and differentiation
is one of the most pivotal subjects in stem cell research.
Figure 3 Growth and differentiation of hMSCs on CNT with the differ
showing the experimental procedure. CNTs were assembled on Au substra
functionalization with thiolated polyethylene glycol (PEG-SH). hMSCs were
responses to the orientation of CNT networks. The hMSCs were elongated
between CNTs and cells (adapted from reference [28]).
Pristine CNT shows poor dispersion within most types
of solvents. It is insoluble and chemically inert in culture
media. CNT alone is rarely used in medical applications,
as insoluble CNT among cells can be toxic to the cells
[31]. Therefore, surface modification of the CNT is ne-
cessary. CNT that has undergone surface modifications
could allow higher activity and interaction between the
CNT and the cell. In addition, one of the main concerns
about CNT composite application on tissue engineering
is the harmful immune response against CNT. Coating
CNT with biocompatible protein has been the candidate
to alleviate the immune response. For example, laminin,
an essential part of human ECM, was fabricated with
SWCNTs in layer-by-layer structure. SWCNT-laminin
films eventually minimized the immune response with-
out affecting neural differentiation potential of CNT.
The result implied that CNT-protein composite can be
used as a potential biocompatible material for neural tis-
sue engineering [20].
Potential toxicity of CNT has been a considerably im-

portant issue for biomedical applications. CNT toxicity
depends on its physical and chemical properties, such as
CNT dimensional parameter or nature of the attaching
target surface. However, there are still no general theor-
ies on what makes CNT more or less biocompatible and
ent arrangement of individual CNTs. (a) Schematic diagram
tes in an aligned or a randomly oriented formation, following
cultured and investigated. (b) Plausible model to explain the hMSC
along the alignment direction of the CNTs because of a high affinity
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toxic. Despite numerous studies, it is uncertain to either
classify CNT as a toxic or nontoxic material. Although
CNT shows toxicity at some degree, it could be miti-
gated by controlling some of its properties. With sus-
tained research, CNT could be hope for a potential
biomedical tool.

Conclusions
CNT has emerged as a promising biocompatible sub-
strate among researchers for its unique properties. In tis-
sue engineering, it is important for the substrate to
mimic the natural environment of stem cells in order to
control direction, proliferation, and differentiation of
stem cells. In nature, both proliferation and differenti-
ation of stem cells are highly related to external signals
and metabolic pathways those are dependent on the
ECM. In other words, proliferation and differentiation of
stem cells are favorably based on the nanotopography
and microenvironment of cell adhesion substrates. CNT
could be managed to represent a favorable topography
and microenvironment for stem cells. However, there
are still various technical shortages that should be inves-
tigated for CNT application on cell therapy. The future
potential of CNT application is promising for broad
types of tissue therapies such as heart, liver, bone, and
other tissues.
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