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Abstract 

Personalized medicine aims to provide tailored medical treatment that considers the clinical, genetic, and environ‑
mental characteristics of patients. iPSCs have attracted considerable attention in the field of personalized medicine; 
however, the inherent limitations of iPSCs prevent their widespread use in clinical applications. That is, it would be 
important to develop notable engineering strategies to overcome the current limitations of iPSCs. Such engineering 
approaches could lead to significant advances in iPSC‑based personalized therapy by offering innovative solutions 
to existing challenges, from iPSC preparation to clinical applications. In this review, we summarize how engineering 
strategies have been used to advance iPSC‑based personalized medicine by categorizing the development process 
into three distinctive steps: 1) the production of therapeutic iPSCs; 2) engineering of therapeutic iPSCs; and 3) clinical 
applications of engineered iPSCs. Specifically, we focus on engineering strategies and their implications for each step 
in the development of iPSC‑based personalized medicine.

Keywords Personalized medicine, Engineering strategies, Induced pluripotent stem cells, Next‑generation 
therapeutics

Introduction
Personalized medicine, also referred to as precision med-
icine, offers tailored medical treatment that considers 
the clinical, genetic, and environmental characteristics 

of patients [1]. Advances in biotechnology and growing 
awareness of quality of life have promoted a paradigm 
shift from conventional medicine toward personalized 
medicine. Conventional medicine provides patients with 
guidelines established through empirical- and mecha-
nism-based treatment [2]. Although this approach con-
siders patient heterogeneity, it has limited potential for 
optimized therapy or treating specific cases [3]. Person-
alized medicine has significant advantages over con-
ventional medicine by providing optimized therapy that 
enhances treatment safety and efficacy while reducing 
adverse effects. In addition, personalized medicine can be 
applied to ultrarare diseases as well as preventive medi-
cine through disease modeling and diagnosis [4]. There-
fore, personalized medicine improves patient health by 
providing customized therapies according to an indi-
vidual’s biological information [5], resulting in improved 
recovery time and clinical failure rates [6, 7].

In 2006, Takahashi and Yamanaka first reported the 
generation of iPSCs by delivering four key transcription 
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factors (OCT3/4, SOX2, c-MYC, KLF4) into murine 
adult fibroblasts using retroviral vectors [8]. These gen-
erated iPSCs exhibited typical embryonic stem cell-like 
characteristics, including the morphology, growth behav-
ior, and expression of distinctive embryonic stem cell 
markers [9]. iPSCs also have the potential for self-renewal 
and pluripotency. The discovery of iPSCs led to dramatic 
improvements in personalized medicine [9]. As iPSCs are 
derived from a patient’s cells, they are promising candi-
dates for disease modeling, drug screening, and genetic 
modification. iPSCs also have significant advantages; for 
example, they are unencumbered by ethical issues (unlike 
embryonic stem cells), they can differentiate into almost 
every cell type, and they are highly immunocompatible 
because they are harvested and reprogrammed from the 
patient’s own cells [10].

Despite abundant research on iPSCs in relation to per-
sonalized medicine, numerous obstacles remain to the 
successful production of high-quality iPSC therapeutics; 
these include reprogramming efficiency, expansion, dif-
ferentiation capabilities, and quality control [11]. These 
limitations impede the development of high-quality 
iPSC products. However, engineering strategies have the 
potential to overcome these limitations and facilitate the 
widespread use of iPSCs in personalized medicine [12]. 
The development process of iPSC-based personalized 
medicine can be divided into three distinct steps. The 
first step is the production of therapeutic iPSCs. In this 
step, patient biopsies can either be reprogrammed into 
iPSCs in the hospital (in-hospital iPSCs) or sent away 
for the production of commercialized therapeutic iPSCs 
(which includes commercialized iPSCs and personalized 
iPSC line banking) [13, 14]. Various supporting tech-
niques are used to produce therapeutic iPSCs, such as 
tissue treatment, reprogramming, expansion, and auto-
mated systems for iPSC production [15]. The second 
step is the engineering of therapeutic iPSCs. Engineering 
strategies such as the paracrine effect [16], differentiation 
[17], biomodulation [18], and pharmaceuticals [19] offer 
various opportunities for applying therapeutic iPSCs 
to personalized medicine. These strategies can either 
improve the performance of iPSC therapeutics or impart 
new functions. The third step is the clinical application 
of engineered iPSCs. Individual or combined engineering 
strategies can be used in clinical applications. The appli-
cation of engineered iPSCs could involve personalized 
tissue regeneration, personalized cancer therapy, and 
drug development identified through drug screening of 
the iPSCs derived from the patient’s cells [20].

While other reviews on iPSCs have highlighted on bio-
materials, generation techniques, and clinical applica-
tions, we focused on how engineering strategies can be 
comprehensively applied in iPSC-based personalized 

medicine ranging from iPSC preparation stage to clini-
cal applications. In this review, we provide a classifica-
tion to categorize the existing researches with state of the 
art engineering technologies. In this review, we highlight 
how engineering strategies have been applied to advance 
iPSC-based personalized medicine by categorizing the 
development process into three distinctive steps. For 
each step of iPSC-based personalized medicine develop-
ment, we focus on the engineering considerations and 
their implications (Fig. 1). First, we introduce the prepa-
ration of therapeutic iPSCs, which include in-hospital 
iPSCs, commercialized iPSCs, and personalized iPSC 
lines, as well as supporting techniques. We then discuss 
recent progress in engineering strategies for generating 
iPSC functions suitable for personalized applications. 
Third, we review recent progress in the clinical applica-
tion of iPSCs for personalized medicine. Finally, we dis-
cuss the remaining limitations, challenges, and prospects 
for engineering strategies in iPSC-based personalized 
medicine.

Preparation of iPSCs for personalized medicine
iPSC preparation is regarded as the primary stage in the 
therapeutic application of iPSCs for personalized medi-
cine. Therefore, in this section, we focus on “Step 1: Pro-
duction of therapeutic iPSCs” (Fig.  1). There are three 
major approaches for producing therapeutic iPSCs: 1) 
production of in-hospital iPSCs; 2) production of com-
mercialized iPSCs; and 3) production of personalized 
iPSC lines. Each approach involves different procedures 
and additional scientific processes for the preparation of 
therapeutic iPSCs (Table 1). A common initial stage is the 
collection of patient biopsies from different parts of the 
body, such as the skin, blood, liver, hair follicles, or urine. 
After biopsy collection, the following stage involves the 
production of either in-hospital iPSCs or commercialized 
therapeutic iPSCs [13, 14]. Commercialized therapeutic 
iPSCs can either be produced from fully automated pro-
cesses (commercialized iPSCs) or established as person-
alized iPSC lines for personalized use. Both in-hospital 
and commercialized therapeutic iPSCs hold great prom-
ise for personalized medicine. The approach to produce 
in-hospital iPSCs could provide an immediate supply of 
patient-specific cells. On the other hand, commercializ-
ing the therapeutic iPSCs can significantly increase the 
productivity and quality compared to those of in-hospital 
iPSCs.

General techniques for iPSC preparation
Reprogramming techniques
Several reprogramming techniques are available for 
producing iPSCs, including biochemical, chemical, and 
mechanical reprogramming approaches. One of the 
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simplest procedures produces iPSCs from adult human 
dermal fibroblasts, where four Yamanaka transcrip-
tion factors (OCT3/4, SOX2, c-MYC, KLF4) play a key 
role [8]. Countless studies have established reprogram-
ming processes based on different viral (Lentivirus, Sen-
dai) and non-viral (MiniCircle, Episomal, mRNA, and 
microRNA) reprogramming vectors [40]. Occasionally, 
reprogramming factors may diverge and some additional 
transcriptomic factors and/or small molecules may be 
added to achieve the outcome. For example, Armijo et al. 
suggested that patient fibroblasts can be reprogrammed 
using a lentivirus encoding the reprogramming factors 
OCT4, SOX2, c-MYC, KLF4, NANOG, and LIN28 sup-
plemented with small molecules [69]. Recently, for a 
patient carrying the atrial septal defect mutation for con-
genital heart disease in the GATA4 gene, a urine sample 

was reprogrammed by lentiviral particles containing 
human POU5F1, SOX2, KLF4, c-MYC, and RFP to pro-
duce iPSCs via epigenetic modification [70]. Currently, 
the most promising and reliable viral vector for repro-
gramming cells to produce in-hospital iPSCs is the Sen-
dai virus. Previous studies have demonstrated the process 
of sampling fibroblasts through skin punch biopsies and 
reprogramming them using the Sendai virus expressing 
the four major factors OCT4, SOX2, KLF4, and c-MYC 
[71–73]. In addition, a study comparing six reprogram-
ming techniques according to their transcriptomic and 
epigenomic differences (lentivirus, Sendai, MiniCircle, 
episomal, mRNA, and microRNA) found that Sendai-
virus-based reprogramming was the optimal method for 
generating human iPSCs [40]. Moreover, a T-cell repro-
gramming technique based on the Sendai virus has been 

Fig. 1 Overview of iPSC engineering steps for personalized medicine. Step 1: Production of therapeutic iPSCs (three approaches). Approach 1. 
Production of in‑hospital iPSCs. Patient biopsy collected from skin, blood, liver, hair follicles, or urine is reprogrammed by reprogramming factors 
integrated with viral and non‑viral vectors for the production of iPSCs. In‑hospital iPSCs are then expanded for further use. Approach 2. Production 
of commercialized iPSCs. Patient biopsy is collected from the hospital and sent to a company for commercialization. Fully automated processes 
are used for commercialized iPSC production, followed by a quality assessment. Approach 3. Production of personalized iPSC lines. Patient biopsy 
is collected from the hospital and sent to a company. Samples are reprogrammed to produce commercialized iPSCs. The commercialized iPSCs are 
further expanded using bioreactor systems. Purification stages should be performed before the establishment of personalized iPSC lines. Step 2. 
Engineering of therapeutic iPSCs (four approaches). Approach 1. Engineering iPSCs for paracrine effects. iPSCs release different types of secretomes 
and regulate cell fate, such as proliferation, angiogenesis, and cell migration. Approach 2. Engineering iPSCs for differentiation. iPSCs are 
differentiated by electromagnetic factors, mechanical factors, and biomaterial factors. Approach 3. Engineering iPSCs for biomodulation. Different 
types of engineering techniques are used for biomodulation. iPSC‑derived immune cells (T‑cells, NK cells) are used for immunomodulation, 
whereas CRISPR, TALEN, and ZINC fingers are used for genetic modification, which includes disruption, transgene insertion, and gene correction. 
Approach 4. Engineering iPSCs for pharmaceuticals. Engineering strategies such as organoids, in vitro models, and extracellular vesicles are used 
for pharmaceuticals. Step 3. Application of engineered iPSCs (three approaches used in various combinations). Approach 1. Tissue regeneration. 
Engineered iPSCs can either be directly injected or transplanted with scaffolds. Approach 2. Cancer therapy. iPSCs are used for tumor regression 
through various combinations of engineering strategies. Approach 3. Drug development. Engineered iPSCs are used for drug development 
and drug screening
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employed for the generation of iPSCs, whereby a small 
amount of human peripheral blood was collected and 
reprogrammed by activated T-cells and mutant Sen-
dai virus encoding human OCT3/4, SOX2, KLF4, and 
c-MYC [74]. Retroviral reprogramming is another viral-
based reprogramming technique for producing iPSCs. 
For example, a previous study isolated dermal fibroblasts 
from patients carrying parkin gene mutations, then 
reprogrammed these cells using retroviruses carrying 
OCT4, SOX2, KLF4, and c-MYC, providing a potential 
therapy for the treatment of Parkinson’s disease [75]. 
Patient-specific pluripotent stem cells for neurological 
disease applications have been produced through sev-
eral common reprogramming methods, such as retroviral 
and lentiviral integration of OCT4, SOX2, c-MYC, KLF-
4, Cre-loxP recombination, PiggyBac transposon, small 
molecules, protein-based, and microRNA factors [76].

Episomal-based reprogramming is also a prominent 
reprogramming method for the production of iPSCs. 
Through this method, patient samples are collected and 
reprogrammed by an episomal non-integrated procedure. 
For example, to produce neuron cells, patient biopsies 
were collected from peripheral blood and reprogrammed 
using episomal plasmids encoding the transcription fac-
tors OCT3/4, SOX2, KLF4, LIN28, and L-MYC, result-
ing in their successful differentiation into neurons [77]. 
Moreover, to determine targeted iPSCs, a reprogram-
ming technique combining episomal plasmids with small 
molecules has been established for adult fibroblasts [25]. 
For the clinical treatment of strokes, which represent a 
severe health problem in the modern world, in-hospital 
iPSCs can be generated from patient fibroblasts. That is, 
an electroporation reprogramming technique has been 
used for the integration of episomal plasmid vectors com-
prising OCT3/4, KLF4, SOX2, L-Myc, and Lin28 [26]. 
Esanov et  al. suggested reprogramming patient fibro-
blasts using non-viral, integration-free episomal plas-
mids combined with OCT4, NANOG, TRA-1–81, and 
SSEA4 [27]. mRNA is another key tool for iPSC repro-
gramming. One study compared two different repro-
gramming methods for fibroblasts collected from the 
patient’s foreskin; one sample group reprogrammed by 
transduction with an integrating lentiviral vector encod-
ing SOX2, OCT4, LIN28, and NANOG, whereas the 
other was reprogrammed using non-integrating mRNAs 
encoding SOX2, OCT4, LIN28, KLF4, and c-MYC. They 
found that the mRNA-reprogrammed sample was differ-
entiated into otic cell types and concluded that it was the 
safest way of inducing pluripotency [29]. Another study 
involving the reprogramming of a urine-derived cell line 
concluded that the mRNA reprogramming technique is 
a fast and reliable method [30]. Another study produced 
in-hospital iPSCs from a 50-year-old female patient by 

reprogramming somatic fibroblasts via the transfection 
of synthetically modified mRNA encoding transcription 
factors [78].

Expansion techniques
Continuous production of iPSCs or iPSC-based products 
is another important consideration for increasing cost-
effectiveness of iPSCs. From this point of view, the expan-
sion of iPSCs is recognized as a significant factor in the 
field of personalized medicine for continuous treatment. 
The best way to solve this issue is to use an expansion 
system that has been used for cell expansion, optimized 
for iPSCs. For example, human iPSCs can be expanded 
to 2.3 ×  106 (maximum cell density) using vertical-wheel 
bioreactors within 1 to 7  days and used for continuous 
innovative cell-based treatment [43]. Similarly, iPSC-
derived macrophages can be produced using stirred-tank 
bioreactors within 10 to 15 days and used for continuous 
innovative cell-based treatment (Fig.  2A) [41]. Micro-
carrier-based platforms are also popular for iPSC pro-
duction. For example, degradable gelatin methacryloyl 
microcarriers were employed in a reliable, scalable, and 
affordable method for the expansion and rapid harvest 
of iPSCs using an inexpensive and bespoke microfluidic 
step-emulsification apparatus, which achieved expansion 
of 8.8 to 16.3 times within eight days (Fig.  2B) [45]. In 
any commercialized product, a high yield within a short 
time is desirable. Therefore, researchers have developed 
an expansion-based spinner culture medium approach 
for the high-yield, large-scale generation of macrophages 
using iPSCs. These macrophages exhibit cytokine release, 
phagocytosis, and chemotaxis for drug screening [46]. 
Moreover, the inflection of signaling pathways through 
different enzymatic or gene editing activities is another 
reliable technique for the production of iPSCs. In addi-
tion, modulating signaling pathways by inhibiting glyco-
gen synthase kinase-3b with CHIR99021 can promote 
human iPSC neural progenitor proliferation in a cell den-
sity-dependent manner, enhancing iPSC expansion by 10 
to 25 times, which is beneficial for extensive drug screen-
ing and tissue engineering activities [50].

Production of in‑hospital iPSCs
The main purpose of in-hospital iPSCs is an immedi-
ate use of patient-derived iPSCs to promote therapeu-
tic effect. In this approach, appropriate biopsy location, 
reprogramming technique, and additional factors to 
increase reprogramming efficiency should be consid-
ered for the successful production of in-hospital iPSCs. 
Biopsies collected from different parts of the body are 
considered somatic cells. These primary somatic cells can 
be reprogrammed into iPSCs by different types of repro-
gramming factors with the help of viral and non-viral 
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Fig. 2 Preparation and automation of iPSCs for personalized medicine. a Mass production of human iPSCs in stirred‑tank bioreactors. 
Hematopoietic differentiation of human iPSCs in stirred‑tank bioreactors. Reproduced with permission from Ref. [41]. b Scalable system for iPSC 
generation, where uniform gelatin methacryloyl microcarriers are fabricated via the microfluidic‑based emulsification process. Reproduced 
with permission from Ref. [45]. c Nanopuncture‑assisted iPSC reprogramming via the intracellular delivery of mini‑intronic plasmids (MIP) 
and human neonatal dermal fibroblast (HDF) cells. Reproduced with permission from Ref. [79]. d A microfluidic device is designed to create 
a transient membrane hole in the cell surface when they are passed through the device because of the rapid deformation of cells. Reproduced 
with permission from Ref. [80]. e Long‑term maintenance of human iPSCs by an automated cell culture system, which helps human iPSCs maintain 
their undifferentiated state for 60 days. Human iPSCs generated by this system can differentiate into three germ layer cells as well as dopaminergic 
neurons and pancreatic cells. Reproduced with permission from Ref. [15]. f An automated procedure for the iPSC line expansion through culturing 
and reprograming from human fibroblast in a controlled clean room environment. This platform is designed with a liquid handling unit, incubator, 
robotic arm, microscope, picker, plate reader, centrifuge, and microtiter plate. Reproduced with permission from Ref. [65]
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vectors [40]. In-hospital iPSCs may also be subjected to 
additional expansion processes using tissue culture dish 
or multi-culture flasks for their immediate use in the 
hospital [14]. The biopsy location is an important consid-
eration when producing in-hospital iPSCs. For targeted 
iPSC production, Sharma et  al. demonstrated that, in 
patients with TRNT1-associated Retinitis pigmentosa, 
skin samples should be collected from the upper, non-
sun exposed arm and reprogrammed by viral transduc-
tion with the transcription factors OCT4, SOX2, KLF4, 
and c-MYC [81]. Human peripheral blood is considered 
a major source of sample collection because it involves 
the most accessible and least invasive procedure for in-
hospital iPSC production by a non-integrating episomal 
plasmid approach with SOX2, KLF4, L-MYC, LIN28, and 
EGFP reprogramming factors [82]. Several researchers 
have proposed novel strategies to increase reprogram-
ming efficiency. For example, Wang et  al. demonstrated 
a nanoscale puncturing strategy for the efficient pro-
duction of in-hospital iPSCs (Fig. 2C). Specifically, after 
collecting patient fibroblast cells, an integration-free 
plasmid containing OKSM reprogramming factors along 
with hairpin RNA p53 was used for cellular reprogram-
ming, and diamond nanoneedles were used for cell 
puncturing [79]. Recently, various reprogramming tools 
have been suggested to boost iPSC generation tech-
nology. With the help of bioinformatics tools, GBX2, 
NANOGP8, SP8, PEG3, and ZIC1 were used for iPSC 
generation in a patient with Parkinson’s disease, resulting 
in a remarkable increase in the number of iPSC colonies 
[83]. In addition, a microfluidic approach has been devel-
oped by which cells can pass through the channel of 30 
to 80% smaller diameter and creates transient holes to 
defuse materials into the cytosol. Through this approach, 
reprogramming efficiency has increased 10-folds com-
pared to that of electroporation (Fig. 2D); this technique 
enables the reliable and affordable production of iPSCs 
for without using vectors [80]. In summary, for the suc-
cessful production of in-hospital iPSCs, it is important to 
consider the biopsy location, reprogramming technique, 
and additional transcriptomic factors.

Production of commercialized iPSCs
The main purpose of commercialized iPSCs is to 
increase the productivity and quality of iPSCs through 
commercialization. In this approach, appropriate 
expansion techniques, automated production pro-
cesses, and quality control should be considered for the 
successful production of commercialized iPSCs. Briefly, 
biopsies collected from hospital are sent to a com-
pany for commercialization. Various fully automated 
processes (e.g., reprogramming, proliferation, and 
expansion) are employed to produce commercialized 

iPSCs [62]. After the fully automated processes, qual-
ity assessment is a major requirement for the success-
ful commercialization of iPSCs and for ensuring patient 
safety [67]. Many scientists have developed fully auto-
mated or semi-automated iPSC production lines [64]. 
Compared to manual systems, fully automated systems 
have many advantages for reducing contamination. 
Indeed, a completely automated technology has been 
developed that allows human iPSCs to remain undiffer-
entiated for 60 days under an automated culture system 
(Fig. 2E) [15]. Humans are a major source of biological 
contamination; therefore, delaying human involvement 
at the biomaterial production site is highly beneficial. 
To achieve this aim, a fully automated system has been 
designed for the generation of footprint-free hiPSCs, 
ranging from human fibroblasts expansion, isolation, 
and reprogramming. A high-speed microscope and 
image-based dilution calculation confirmed the in-
processes quality control. Through this process, iPSCs 
expressed sustainable pluripotency for at least 5 weeks. 
(Fig.  2F) [65]. In addition, artificial intelligence (AI)-
based machine learning techniques are useful for the 
fully automated production of commercialized iPSCs, 
with a k-NN classifier achieving a classification accu-
racy of 62.4% [67]. Moreover, Truong et  al. presented 
a repeatable and scalable procedure for performing 
human iPSC culture and differentiation using TECAN 
Fluent automated cell culture workstations. This tech-
nique generated patient-derived retinal pigment epi-
thelial cells for use in drug testing and other clinical 
applications [63].

Quality assurance during commercialized iPSC pro-
duction is vital for ensuring patient safety. For example, 
Elanzew et al. established a fully automated system that 
encompasses fibroblast expansion to in-process quality 
control, as well as the determination of dilution ratios. 
This system was subsequently used for high-quality and 
industrial-scale drug screening and disease modeling 
[65]. Currently, new technologies are commonly inte-
grated with AI. Recently, an automated system integrated 
with AI-based microscopy was established for cell sort-
ing, which boasts 88% sensitivity and 98% specificity for 
human iPSC identification and has widespread appli-
cations in tissue engineering, therapeutic applications, 
and disease models [62]. Reducing production costs is 
another important aspect of commercialized iPSC pro-
duction. According to previous research, the use of a 
synthetic culture system without growth factors together 
with three chemicals, fewer recombinant proteins, and 
commercially available media can reduce costs associated 
with the production of commercialized iPSCs from either 
human dermal fibroblasts or peripheral blood mononu-
clear cells [51].



Page 10 of 27Park et al. Biomaterials Research           (2023) 27:67 

Production of personalized iPSC lines
The main aim of the personalized iPSC lines is to estab-
lish an individual biobank for preventive purposes. The 
personalized iPSC lines can be utilized for disease mod-
els or expanded and stored in sufficient quantities for 
future treatment. In this approach, biopsies sent to a 
company undergo reprogramming, expansion, and puri-
fication to establish a patient-specific iPSC line. Numer-
ous automated processes have been established for the 
required reprogramming, bioreactor-based expansion, 
GMP compliance quality control, and purification of 
iPSCs [60]. Personalized medicine uses biological data 
from genetic information or biomarkers according to 
the profile of the specific person requiring treatment or 
medication, enabling faster clinical decision-making. To 
achieve this goal, patient-specific personalized iPSC line 
banking is required, with some countries already estab-
lishing such iPSC lines. For example, Genetic disorder is 
a major cause of organ dysfunction. Therefore, a previ-
ous study created a patient-specific iPSC line by silencing 
mutant collagen genes related to Osteogenesis imperfecta 
through gene targeting by an adeno-associated virus [84]. 
Furthermore, CRISPR/Cas9-dependent insertion/dele-
tion techniques have been used to establish personalized 
iPSC lines through passage-matched isogenic controls 
in a single step, providing a platform for the rapid devel-
opment of loss-of-function disease models [55]. As part 
of a personal genome project in Canada, footprint-free 
personalized iPSC lines were established from four vol-
unteers, which can be used to identify variant-preferred 
healthy control lines and specific disease settings [59]. 
Moreover, personalized iPSC lines can be a solution to 
the problem of establishing a commercial cord blood 
bank with no risk to the donor, thereby enabling the 
treatment of neonates with genetic disorders or congeni-
tal deformities [85]. Another recent study established a 
personalized iPSC line of therapeutic candidates for type 
II collagenopathy treatment. Specifically, iPSCs derived 
from limb-bud-like mesenchymal cells were used to pro-
duce chondrocytes and cartilaginous tissues for drug 
screening and tissue engineering [54].

One study generated clinical-grade personalized 
iPSC lines from patient-specific fibroblasts to produce 
iPSC-derived retinal cells within an FDA-registered, 
cGMP-compatible facility with xeno-free reagent in an 
ISO class 5 environment [86]. Moreover, Zhu et al. sug-
gested a procedure for generating human iPSC lines from 
CD34 cord blood cells and differentiating them into reti-
nal cells using small molecule-based retinal induction 
under cGMP-compliant conditions, thereby generating 
transplantable photoreceptors [60]. Another study suc-
cessfully produced personalized iPSC lines under GMP-
compliant conditions through the Sendai virus-based 

reprogramming of peripheral blood cells and their dif-
ferentiation into CD34 + hematopoietic stem cells [61]. 
Recently, a standard protocol was developed for the pro-
duction and quality control of clinical‐grade iPSC lines 
within a regulatory framework [87]. A quality approach 
to manufacturing is mandated by GMP laws, allowing 
businesses to reduce or completely avoid instances of 
contamination, confusion, and mistakes. Furthermore, 
the effectiveness of a GMP-compliant method of produc-
ing iPSC lines was confirmed through a phase 1 open-
label clinical trial in subjects with steroid-resistant acute 
graft versus host disease, which represents a milestone in 
the production of personalized iPSC lines [24]. Generally, 
treating patient-specific diseases is facilitated by stor-
ing all of the genetic and immunological data of an indi-
vidual. Thus, personalized iPSC line banking is the best 
option for personalized medicine. The major require-
ments for personalized iPSC line banking are as follows: 
a fully automated mechanism, low production costs, high 
affordability, high production rate in a short time, GMP 
compliance with no contamination, final product and in-
process quality control and assessment, patient safety, 
and a controlled transportation and storage system.

Engineering strategies of iPSCs for personalized 
medicine
In this section, we focus on “Step 2: Engineering of thera-
peutic iPSCs” (Fig.  1). This stage is the most important 
in terms of improving the function of iPSCs for person-
alized medicine. Here, we cover the four engineering 
approaches for developing optimized iPSCs according 
to different goals: 1) engineering iPSCs for paracrine 
effects; 2) engineering iPSCs for differentiation; 3) engi-
neering iPSCs for biomodulation; 4) engineering iPSCs 
for pharmaceuticals. Specifically, we discuss the recent 
research trends and future perspectives. Approach 1 is 
related to the regulation of cellular behavior and function 
(e.g., proliferation, migration, and growth factor expres-
sion) through the paracrine effect of engineered iPSCs. 
Approach 2 is related to engineering techniques (e.g., bio-
chemical, electromechanical, and biomaterials factors) 
for promoting the differentiation of iPSCs. Approach 3 is 
related to the biomodulation of iPSCs (e.g., T-cell, CAR-
T-cell, NK cell, and gene modulation) for cancer therapy. 
Approach 4 is related to in vitro engineering tools (e.g., 
organoids, organ-on-a-chip models, extracellular vesi-
cles) for pharmaceutical development.

Engineering iPSCs for paracrine effects
The main purpose of engineering iPSCs for enhancing 
paracrine effect is an engineering approach that can max-
imize the secretion of growth factors and cytokines to 
promote tissue regeneration. In other words, engineering 
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iPSCs can be an effective modulator of paracrine effect. 
In this section, we review the engineering approaches of 
iPSCs to maximize the paracrine effect for personalized 
medicine. From this point of view, engineering iPSCs 
is defined as an engineering tool to maximize parac-
rine effects. Autologous cell therapies are arguably one 
of the most personalized forms of medicine, whereby 
a patient’s cells are used to generate a patient-specific 
product that is only administered back to the original 
donor [88]. In recent decades, iPSC-based autologous 
cell therapies have received substantial attention in terms 
of enabling patient-specific treatment for personalized 
medicine applications [89]. Injected iPSCs not only have 
therapeutic efficacy on their own but also promote the 
functional improvement of the surrounding environ-
ment through paracrine effect [90]. Recent studies have 
reported the promotion of cell proliferation, cell migra-
tion, and growth factor expression through paracrine 
effect of engineered iPSCs [16, 91]. Ai et  al. suggested 
an interesting approach to maximize paracrine effect of 
iPSC-derived cardiomyocytes, thereby overcoming poor 
cell viability and engraftment rates of cell-based thera-
pies. Prior to transplantation, they transfected VEGF 
mRNA to iPSC-derived cardiomyocytes to achieve 
overexpression of VEGF. The over-expression of VEGF 
facilitated cell proliferation in transplanted site, thereby 
promoting ventricular remodeling [92]. Also, Munarin 
et al. introduced a strategy of enhancing paracrine effect 
of implanted muscle tissue by locally delivering angio-
genic factors. They found that local administration of 
angiogenic factors resulted in increased volumetric net-
work density with enhanced host vascularization into 
implanted cardiac tissue [93]. Liang et  al. also reported 
that the conditioned medium of reprogrammed iPSCs 
(CM-iPSCs) accelerates wound healing in a mouse cuta-
neous wound model through enhanced angiogenesis and 
cell migration (Fig. 3A). This study reported that growth 
factors in the conditioned medium of iPSCs promote skin 
regeneration by maximizing paracrine effect, thereby 
confirming tissue regeneration through paracrine effect 
of reprogrammed iPSCs [16].

Engineering iPSCs for differentiation
The main aim of engineering iPSCs for differentiation is 
to maximize cell function, which is a key factor in regen-
erative medicine [99]. In this section, we review engineer-
ing approaches of iPSCs to maximize the differentiation 
for personalized medicine. Another form of iPSC-based 
personalized tissue regeneration involves the transplan-
tation of scaffolds conjugated with iPSCs. The most sig-
nificant factor to be considered in scaffold engineering 
is the improvement of the differentiation efficiency of 
iPSCs. Following the increased interest in personalized 

medicine, studies have investigated different engineer-
ing approaches for promoting the differentiation of iPSCs 
using scaffold-based biomaterials, electromagnetic, and 
mechanical stimulation [94, 95]. In particular, a bioma-
terial-based strategy for effective iPSCs differentiation 
requires the following conditions: excellent biocompati-
bility, adequate mechanical properties, good physical and 
chemical properties, high wear resistance, high corrosion 
resistance and low immune reactivity. The biomaterial-
based engineering strategies under these conditions will 
be the most important future factor in providing efficient 
differentiation and safety of iPSCs for application of per-
sonalized medicine. For example, Ji et al. reported that a 
3D bioprinting scaffold composed of alginate and gelatin 
bio-inks promoted the differentiation of iPSCs into endo-
metrial cells (Fig. 3B). They also determined the optimal 
conditions for promoting iPSC differentiation and sug-
gested the application of this natural polymer-based 3D 
scaffold for the repair of the uterine endometrium [94]. 
This study showed that natural polymer-derived bioink 
and bioprinting engineering technology could promote 
the differentiation of iPSCs, showing bioprinting technol-
ogy is promising in terms of using various microstruc-
tures or biomaterials to promote iPSCs differentiation. 
Electrical stimulation is a powerful strategy that can be 
used to promote differentiation of iPSCs. They affect the 
voltage-gated ion channels on the cell membrane, and 
thus promote cell metabolism. The electrical stimulation 
has been reported to enhance neurogenic, cardiomyo-
cyte, and myogenic differentiation [100–102]. Recently, 
several studies have introduced the effect of magnetic 
stimulation on neurogenic differentiation of iPSCs. Liu 
et al. have reported on the effect of magnetic stimulation 
frequency on the neuronal differentiation of iPSCs. Their 
study revealed that high frequency magnetic stimuli pro-
mote glutamatergic neuron differentiation, whereas low 
frequency and intermittent theta-burst magnetic stimuli 
may promote the generation of mature neuron formation 
[103]. Mechanical stimulation also provides significant 
cue that affects iPSC differentiation. For example, Dou 
et  al. proposed a microdevice platform for characteriz-
ing the effect of mechanical strain on the cardiomyocyte 
differentiation of iPSCs (Fig.  3C). By applying cyclical 
strains of varying magnitudes (5%, 10%, 15%, and 20%) 
to a monolayer of iPSC-cardiomyocytes, they measured 
the contractile stress during mechanical stimulation and 
quantified the effect of different mechanical strain mag-
nitudes on the contractility and maturation of iPSC-
cardiomyocytes. Their study confirmed the correlation 
between mechanical strain and iPSC-cardiomyocyte dif-
ferentiation through the engineering platform [95]. To 
summarize, previous studies have used elaborately and 
precisely designed engineering strategies to promote 
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Fig. 3 Engineering strategies and applications of iPSCs for personalized medicine. a Conditioned medium generated from umbilical cord‑derived 
mesenchymal stem cells (uMSC‑CdM) and iPSC‑derived mesenchymal stem cells (iMSC‑CdM) effectively promoted cutaneous wound healing. 
Reproduced with permission from Ref. [16]. b 3D bioprinting of a human iPSC‑derived MSC‑loaded scaffold for regeneration of the uterine 
endometrium. The preparation of human iMSC‑loaded hydrogels was followed by the construction of the engineered scaffold through the 3D 
printing process. The engineered scaffolds were cultured in vitro for three days and then transplanted, and the structure and function 
of the endometrium were assessed after the repair of the uterine horn. Reproduced with permission from Ref. [94]. c A microdevice platform 
for characterizing the effect of mechanical strain magnitudes on the maturation of iPSC‑cardiomyocytes. Reproduced with permission from Ref. 
[95]. d Human iPSC‑derived NK (hnCD16iNK) cells produced from donor iPSC line with genetic engineering. The hnCD16iNK cells showed better 
antitumor activity on in vivo ovarian cancer model. Reproduced with permission from Ref. [96]. e Exosomes derived from iPSCs mitigate pulmonary 
fibrosis induced by bleomycin, with less collagen deposition. Reproduced with permission from Ref. [97]. f Gene correction, transcript analysis, 
and differentiation to kidney organoids. Patient‑iPSC‑derived kidney organoids show functional validation of a ciliopathic renal phenotype 
and reveal underlying pathogenetic mechanisms. Reproduced with permission from Ref. [98]
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the differentiation of iPSCs and elucidate the differentia-
tion mechanism, thereby improving the potential for the 
transplantation of scaffolds conjugated with iPSCs.

Engineering iPSCs for biomodulation
The main aim of engineering iPSCs for biomodulation 
is to improve the function of immune substances to 
increase the efficiency of cell-based immunotherapy. In 
this section, we review engineering techniques to maxi-
mize and modulate the function of iPSCs-derived cells 
for cancer treatment. Cell-based immunotherapy, such 
as CAR T-cell therapy, has received tremendous atten-
tion in the field of cancer therapy, especially in patients 
who are refractory to other therapies [104]. Despite rapid 
advances in autologous therapies for cancer, several chal-
lenges remain, including the high cost, challenges to 
large-scale manufacturing, and unsuitability for lympho-
penia patients [104]. iPSCs may be able to overcome these 
challenges because of their unique self-renewal prop-
erties and capacity to be genetically engineered [105]. 
Also, iPSCs can be differentiated into different immune 
cells, such as T-cells, NK cells, invariant NK T-cells, and 
macrophages [106]. Recently, engineering biomodula-
tion studies have utilized the advantages of iPSCs for 
cancer therapy [18, 107, 108]. For example, human iPSC-
derived NK (hnCD16iNK) cells and anti-CD20mAb 
improve regression of B-cell lymphoma and hnCD16iNK 
cells together with anti-HER2 mAb increase the sur-
vival of cancer xenograft model (Fig.  3D). From these 
significant findings expressed hnCD16iNK in combina-
tion with mAbs shows high effectiveness against hema-
tologic malignancies and solid tumors [96]. Li et al. also 
reported that NK cells derived from human iPSCs have a 
typical NK cell phenotype and improved antitumor activ-
ity compared with non-CAR-expressing cells. Moreo-
ver, NK cells derived from human iPSCs significantly 
inhibited tumor growth, prolonged survival in vitro, and 
demonstrated in  vivo activity similar to that of T-CAR-
expressing T-cells. These studies suggest the substantial 
potential for NK cells differentiated from iPSCs in cancer 
therapy applications [18]. Furthermore, Kawamoto et al. 
proposed advanced methods in which cytotoxic cells are 
mass-produced by engineering iPSCs for the regenera-
tion of T-cells. Specifically, iPSCs produced from T-cells 
inherit rearranged T-cell receptor genes; thus, all regen-
erated T-cells should express the same T-cell receptors 
with no cytotoxicity [108].

Engineering iPSCs for pharmaceuticals
Drug development
Engineering iPSCs can contribute to develop innovative 
therapeutics with enhanced efficacy. In this sub-section, 
we review engineering techniques for the development 

of personalized pharmaceuticals or nanomedicines 
(e.g., cell-based therapeutics and cell-free therapeu-
tics). Recently, iPSCs have become attractive candidates 
for cell therapy-based regenerative medicine. Ma et  al., 
introduced a novel strategy of using iPSC-derived orga-
noids for localized scleroderma therapy. According to 
their findings, the iPSC-derived organoids could not 
only alleviated skin fibrosis but also facilitated the recov-
ery of skin-associated functions [109]. Several studies 
have highlighted the potential of iPSCs for developing 
nanomedicines. Zhou et  al. proposed using iPSC-based 
exosomes as a latent tool for the treatment of pulmo-
nary fibrosis (Fig.  3E); these exosomes were shown to 
increase the miR-302a-3p level and silence TET1 and 
miR-302a-3p activity, which then helps to express the 
iPSC-based exosomes and mitigate pulmonary fibrosis 
[97]. This study shows that iPSC-derived exosomes can 
enhance cell migration and can be a candidate for new 
drug development. In addition, Tang et  al. proposed 
novel thermosensitive chitosan hydrogels loaded with 
iPSC-derived exosomes which can provide sustained 
release of miRNA present in the exosomes. The proposed 
hydrogels could significantly promote corneal epithelium 
and stroma regeneration [110].

Drug screening
Engineering iPSCs can also facilitate drug development 
by providing personalized drug screening platforms. In 
this sub-section, we review engineering techniques for 
the developing in  vitro platforms (e.g., organoids, sim-
ple in vitro models, and organ-on-chips). Patient-derived 
iPSCs can be applied in multiple critical in  vitro stud-
ies, such as in  vitro disease modeling, toxicity screens, 
drug development, drug delivery. Furthermore, patient-
derived iPSC models are more suitable for phenotypic-
based drug discovery because they share the same 
genetic background with patients and may exhibit the 
same disease phenotypes. Therefore, large amounts of 
research have recently been conducted on iPSC-based 
in  vitro models (e.g., organs-on-chips, organoids) for 
drug screening. For example, Park et al. reported the use 
of iPSC-based microvascular endothelium interfaced 
with astrocytes and pericytes in a microfluidic human-
like organ-on-a-chip. Microvascular endothelium expres-
sion created the strictness by the differentiation of iPSC 
under hypoxic conditions. This type of chip model can 
be used to introduce drugs and antibiotics through the 
blood–brain barrier [111]. Moreover, Thomas et al. sug-
gested a precise gene editing procedure to model renal 
disease based on kidney organoids differentiated from 
iPSCs that can validate ciliopathic renal phenotypes and 
reveal the underlying pathogenic mechanisms. Their 
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kidney organoids hold great promise in high-throughput 
personalized therapeutic screening (Fig. 3F) [98].

Applications of engineered iPSCs for personalized 
medicine
Patient-specific iPSCs can be used for the regeneration 
of damaged tissues [112], disease treatment [113], drug 
screening [114], and drug development [115], and provide 
solutions to overcome the limitations of conventional 
off-the-shelf therapy. Recent advances in biotechnol-
ogy offer a variety of engineering strategies that can be 
used to impart or promote the function of iPSC-based 
products (Table 2). In this section, we focus on “Step 3: 
Application of engineered iPSCs” (Fig. 1). Specifically, we 
introduce the clinical applications of engineered iPSCs to 
personalized medicine, which can be classified into three 
approaches: 1) tissue regeneration; 2) cancer therapy; and 
3) drug development. Various combinations of the engi-
neering approaches presented in Sect.  3 can be applied 
to advance iPSC-based personalized medicine. For exam-
ple, engineering biomaterials can create biochemically 
and structurally relevant microenvironments suitable for 
personalized tissue regeneration [116]. These engineered 
biomaterials can also be used as carriers to promote the 
survival and proliferation of transplanted cells, result-
ing in clinically successful outcomes [117]. In addition, 
genetically modified iPSCs can be used to create personal 
in vitro models for drug screening [118] or generate sta-
ble immune effectors for cancer therapy [119].

Tissue regeneration
Personalized tissue regeneration can involve either scaf-
fold transplantation or direct injection. For scaffold 
transplantation, it is important to ensure that the materi-
als, architectures, physicochemical properties, and tissue 
constructs are individualized according to the patient’s 
needs. Edri et  al. suggested a novel approach for engi-
neering cardiac, cortical, spinal cord, and adipogenic tis-
sue implants from one small tissue biopsy (Fig. 4A). That 
is, they generated personalized hydrogels by efficiently 
combining autologous iPSCs and extracellular matrix, 
where both the cells and the hydrogels are derived from 
the patient so do not induce an immune response. They 
suggested promising approach to efficiently bioengineer 
autologous tissue construct with any tissue type [175]. 
Moreover, Montgomery et  al. introduced a promising 
strategy to deliver murine iPSC-derived neural progeni-
tors with fibrin-based scaffolds. Owing to their proper-
ties suitable for affinity-based drug delivery systems, 
many studies have been conducted on developing cell-
based delivery platform using fibrin scaffolds. They, for 
the first time, proposed a strategy including a rapid and 
efficient protocol for forming embryonic bodies from 

iPSCs and maximizing subsequent neuronal differentia-
tion. They proposed efficient approach for a personalized 
spinal cord injury therapy [176].

Another approach for tissue regeneration involves 
directly injecting iPSCs into patients. Immune responses 
and differentiated states of iPSCs are important issues 
for this approach. For example, Lu et  al. compared the 
wound healing effect of iPSC-derived therapeutics on 
non-human primates by subcutaneously injecting autol-
ogous and allogeneic iPSCs into immune response-free 
monkeys. The results demonstrated the superior wound 
healing capabilities of autologous iPSCs to their allo-
genic counterparts [90]. Recently, several researchers 
have reported human clinical trials of iPSCs [13, 180]. 
Sugimoto et al. proposed the first-in-human clinical trial 
of autologous iPSC-derived platelets (Fig.  4B), in which 
iPSCs were efficiently expanded and differentiated during 
GMP-grade production. The iPSC-derived platelets were 
then administered to a patient who experienced systemic 
post-transfusion purpura-like complications and had no 
compatible donor, with no adverse effects. As the first 
clinical trial using iPSC-derived platelets, this study pre-
sent feasibility and significant insight for iPSC-based per-
sonalized medicine [177].

Cancer therapy
The potential applications of iPSCs for personalized can-
cer treatment can be divided into two. The first appli-
cation is the replacement or repair of damaged tissue 
caused by radiotherapy and surgery conducted to elimi-
nate tumors [181]. As autologous iPSCs are free from 
immune responses and ethical issues, they can provide 
various strategies to repair damaged tissues by engineer-
ing the patient’s cells from healthy tissue. For example, 
Zhang et  al. employed an iPSC-derived conditioned 
medium to alleviate gamma-irradiation-induced lacri-
mal gland injury. They found that the iPSC-derived con-
ditioned medium reduced inflammatory responses after 
radiation therapy by suppressing p38/JNK signaling, 
which suggests that iPSCs have the potential to treat can-
cer radiotherapy-related injury [182].

The second application involves the significant advan-
tages of iPSCs for cancer immunotherapies [183]. 
Although existing cell-based immunotherapies for cancer 
treatment have undergone substantial advances, limita-
tions such as high cost, difficulty in large-scale produc-
tion, and unsuitability for lymphopenia patients hinder 
their widespread clinical use [104]. However, the use of 
iPSCs combined with engineering strategies can over-
come the current limitations of cancer immunotherapy. 
iPSCs can be continuously expanded and differentiated 
to acquire an unlimited supply of various immune cells 
[119]. For example, Iriguchi et  al. introduced a scalable 
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method to establish T-cells using iPSCs derived from 
antigen-specific cytotoxic T-cells or T-cell receptor-
transduced iPSCs. They also described culture systems 
for the efficient differentiation of iPSCs into T-cells. 
Their study represents a novel strategy for the large-scale 
production of T-cells and their clinical application to 
cancer immunotherapy [184]. In addition, the applica-
tion of CAR engineering to iPSC-derived immune cells 
can achieve effective treatment by specifically targeting 
tumor-associated antigens. Li et  al. engineered iPSC-
derived NK cells to express chimeric antigen receptors 
(NK-CAR-iPSC-NK cells), which significantly suppressed 

tumor growth in an ovarian cancer xenograft model 
while exhibiting reduced cytotoxicity. The proposed NK-
CAR-iPSC-NK cells have substantial potential in cancer 
immunotherapy [18].

Drug development
Engineering iPSCs is expected to further advance the 
innovative application of iPSCs to personalized medicine, 
for example, mutation-specific therapies, early detection 
strategies, personalized disease prevention, personalized 
drug testing, and personalized medicine development 
[183]. In this section, we focus on the personalized 

Fig. 4 Specialized applications of iPSCs for personalized medicine. a Personalized hydrogels for engineering diverse fully autologous tissue 
implants, which were efficiently generated by combining autologous iPSCs and extracellular matrix. As both the cells and the hydrogels are 
derived from the patient, they do not induce an immune response. Reproduced with permission from Ref. [175]. b The first‑in‑human clinical 
trial of iPSC‑derived platelets (iPLAT1). The iPLAT1 study completed the administration of iPSC‑platelets for the first time and confirmed the safety 
in an allo‑PTR patient who would otherwise have no HPA‑compatible donor. No adverse events were observed during the administration 
of autologous iPLAT1. Reproduced with permission from Ref. [177]. c Development of an engineered exosome delivery system. The engineered 
exosomes, BT‑Exo‑siShn3, targeted osteoblasts specifically and contained siRNA to silence the Shn3 gene, which enhanced osteogenic 
differentiation and decreased autologous RANKL expression. Reproduced with permission from Ref. [178]. d Drug screening platform using iPSCs 
derived from a patient with ultrarare diseases. The iPSC platform validated the safety and efficacy of the screened drugs. The efficacy of the screened 
drugs was also investigated in a patient with Leigh‑like syndrome, who showed an enhanced physical state after three years of clinical trials. 
Reproduced with permission from Ref. [179]
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application of iPSC-based therapeutics. Several studies 
have developed nanomedicines from iPSC-derived extra-
cellular vesicles. Extracellular vesicles secreted by iPSCs 
have great potential for cell-free regenerative medicine 
[185]. In specific, Cui et. al., engineered an iPSC-derived 
exosome to develop a bone-targeting gene delivery sys-
tem (Fig. 4C). The engineered exosomes not only showed 
intrinsic anti-osteoporosis function but also exhibited an 
ability to deliver siRNA to osteoblasts to enhance thera-
peutic effect. Their study shows the potential of exosome 
for personalized medicine through the development of 
nanomedicines that can target specific diseases [178]. 
Besides, various studies have reported the efficacy of 
iPSC-derived extracellular vesicles in targeting specific 
diseases such as cardiac diseases [186], ischemic dis-
eases [187], neurodegenerative diseases [188], and cancer 
therapy [189]. Moreover, with the help of personalized 
platforms established from iPSCs, it is possible to help 
patients make rational decisions in clinical trials. Sequi-
era et  al. developed a personalized drug screening plat-
form using iPSCs from a patient with ultrarare diseases 
(Fig.  4D), then used the platform to evaluate the effi-
cacy of three drugs over three years of clinical trials. The 
results indicated an enhanced physical state in the patient 
with Leigh-like syndrome. Moreover, the iPSC-based 
pre-screening platform helped the patient make safe and 
effective decisions in a personalized manner [179]. These 
findings provide next-generation strategies for develop-
ing iPSC-based personalized medicine.

Limitations, challenges, and prospects
Limitations and challenges
Engineering iPSCs for therapeutic applications has huge 
potential for personalized medicine, which may be able 
to overcome the limitations of conventional disease treat-
ments. Despite the many advantages of iPSCs for person-
alized medicine, there are still several limitations to be a 
promising tool for therapeutic applications.

First, the reprogramming efficiency, safety and effi-
cacy are major considerations of iPSC-based personal-
ized medicine. The efficiency of iPSC reprogramming 
is typically low, with the formation of tumorigenesis 
another drawback to the application of regenerative med-
icine [190]. Teratoma formation is critical challenge for 
iPSC-based therapeutic applications [191]. An equally 
important consideration is the potential for disease 
development from the viral and non-viral vectors, as well 
as the reprogramming factors, which may induce a criti-
cal condition in the patient [192]. The cell survival rate 
after transplantation is worthy of consideration. The 
number of transplanted cells engrafted in the damaged 
tissues depends on the disease condition and age of the 
patient. Additionally, once iPSCs are familiarized with 

the specific treatment region, they are generally targeted 
by innate and adaptive immune responses via the host 
body’s immune system [193]. Recently, various studies 
have been proposed to reduce the immune rejection of 
iPSCs using CRISPR/Cas9-mediated genetic engineering 
[194].

Second, the lack of internationally approved regula-
tory guidelines for the production protocols of in-hos-
pital iPSCs, commercialized iPSCs, and personalized 
iPSC lines hinders the application of iPSCs to personal-
ized medicine. Moreover, in-process sterility systems for 
checking bacterial contamination (Mycoplasma) or viral 
contamination should be established according to the 
recommended quality control guidelines of USP, Euro-
pean Pharmacopoeia, or other recognized regulatory 
bodies. In addition, internationally accredited and stand-
ardized methodologies for delivering iPSCs to the tar-
geted area have not yet been established. This is currently 
the greatest limitation, especially for critical organs, as 
well as ensuring reliable clinical staff for the iPSC deliv-
ery program. To resolve abovementioned limitations, the 
global alliance for iPSC Therapies (GAiT) has recently 
published the minimum requirements of quality control 
testing of iPSC [195].

Finally, regarding the production of therapeutic iPSCs, 
high costs associated with their production, characteri-
zation, and quality assessment are also a major limita-
tion of therapeutic applications and commercialization 
[192]. First, iPSC identification should be performed dur-
ing treatment, from the biopsy stage to the end-product 
stage, by single tandem repeat profiles in an accredited 
laboratory to confirm and ensure cell activities. Second, 
purity validation must also be confirmed for patient 
safety. To confirm patient wellbeing, internationally rec-
ognized and standardized purity qualification methods 
should be established from the sample collection stage 
to the end stage of therapeutic application. Third, con-
stant reproducibility should be maintained from the ini-
tial stage of the iPSC production line through to the end 
point of personalized treatment, which requires consid-
eration of the isolation methods, cell culture conditions, 
engineering strategies, and methods of application [192]. 
Finally, after the production of commercialized therapeu-
tic iPSCs, maintaining the appropriate conditions in stor-
age and transportation facilities, e.g. pH, temperature, 
and humidity, represents an immense challenge [196]. 
These issues can be overcome with help of fully auto-
mated production systems. Recently, Paull et  al., devel-
oped a modular, robotic platform for automated iPSC 
reprogramming, characterization, and differentiation 
to achieve minimal manual intervention [64]. Although 
some automated isolation, reprogramming, expan-
sion, and in-process quality checking systems have been 
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established, these should be integrated into an organized 
system [65].

Prospects
Undoubtedly, iPSC-based regenerative therapy will 
become an important aspect of personalized medicine 
in future, with abundant research already bringing us 
closer to this goal. Notably, the development of iPSC 
lines has eliminated the ethical issues and religious con-
cerns associated with embryonic stem cells but main-
tained their excellent pluripotency properties [190]. The 
risk of immune rejection has already been reduced and 
will likely be completely removed in the near future. 
Additionally, with the development of personalized iPSC 
line banking, it is now possible to store patient-specific 
genetic and immunological information and apply per-
sonalized regenerative therapy via automated proce-
dures according to GMP regulatory criteria [86]. Some 
fully automated iPSC line production techniques with 
integrated quality assurance have also been proposed 
[87]. Although establishing personalized iPSC line bank 
is costly and time consuming, it would be a reliable and 
effective solution for personalized therapy in the future. 
Additionally, regarding disease modeling, disease-caus-
ing factors can now be identified by the microfluidics 
model for different patients. High-throughput screening 
for drug testing and toxicity prediction is also undergoing 
continuous development. In the meantime, gene editing 
technology to correct mutations for genetic disease treat-
ment has been made possible through CRISPR, TALEN, 
and ZINC finger techniques [55]. Nevertheless, the mass 
production of commercialized therapeutic iPSCs accord-
ing to the proper regulatory guidelines, involving appro-
priate quality assessments, and conducted in accredited 
GMP-compliant facilities remains a substantial challenge 
for regenerative therapy. To accomplish this, the Global 
Alliance for iPSC Therapies has proposed critical quality 
attributes and recommended test methods for produc-
ing clinical-grade iPSC lines for therapeutic applications 
[195]. Once the various limitations and challenges are 
overcome, engineered iPSCs could become a key tool for 
the personalized medical treatment of many life-threat-
ening diseases.

Conclusion
Personalized medicine provides a tailored medical treat-
ment based on the unique clinical, genetic, and environ-
mental characteristics of individual patients. Moreover, 
engineering strategies offer a wide range of opportunities 
for advancing iPSC-based personalized medicine. In this 
review, we summarize how engineering strategies have 
been applied to advance iPSC-based personalized medi-
cine by categorizing the process into three distinctive 

steps: 1) production of therapeutic iPSCs; 2) engineering 
of therapeutic iPSCs; and 3) application of engineered 
iPSCs. For each step, we discuss the various engineering 
approaches and their implications. Although there are 
still many limitations to the use of iPSCs in personalized 
medicine, including reprogramming efficiency, large-
scale production of therapeutic iPSCs, the possibility of 
teratoma formation, commercialization, and regulatory 
approval, the engineering strategies presented in this 
review can help overcome these limitations. Undoubt-
edly, iPSC-based personalized therapy will become a val-
uable and innovative medical solution in the near future.
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